

Lockheed Martin Technology Services Environmental Services SERAS 2890 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 Telephone 732-321-4200 Facsimile 732-494-4021

DATE: July 19, 2013

TO: Jeff Catanzarita, EPA/ERT Work Assignment Manager

THROUGH: Rick Leuser, SERAS Deputy Program Manager

FROM: Jean Bolduc, SERAS Task Leader

SUBJECT: SUPPLEMENTAL REMEDIAL INVESTIGATION TECHNICAL MEMORANDUM

NEW CASSEL/HICKSVILLE GROUND WATER CONTAMINATION SITE

NASSAU COUNTY, NEW YORK

TECHNICAL MEMORANDUM SERAS 0-144

INTRODUCTION

In December 2010, the New York State Department of Environmental Conservation (NYSDEC) requested that the U.S. Environmental Protection Agency (EPA) nominate areas of groundwater contamination in North Hempstead, Hempstead and Oyster Bay to the National Priorities List (NPL). EPA's Hazard Ranking System (HRS) sampling results confirmed the presence of volatile organic compounds (VOCs) in raw (pre-treated) water above the Maximum Contaminant Level (MCL) in four Town of Hempstead wells (Bowling Green 1 and 2, Roosevelt Field 10, and Levittown 2A), six Hicksville wells (4-2, 5-2, 5-3, 8-1, 8-3, and 9-3) and Westbury Water District Well 11. The New Cassel/Hicksville Ground Water Contamination (NCHGW) Superfund Site as outlined in Figure 1, from the March 2011HRS package, is an area of widespread groundwater contamination located within the Towns of North Hempstead, Hempstead and Oyster Bay, Nassau County, New York (NY). The NCHGW Site was proposed to the NPL in March 2011 and finalized onto the NPL in September 2011.

Previous NYSDEC investigations have identified groundwater contamination associated with the New Cassel Industrial Area (NCIA), former Sylvania, General Instruments and 123 Post Avenue sites in central Nassau County, New York (Figure 1). These sites have been overseen by the NYSDEC, have documented use and release of VOCs, and are located upgradient of a number of public supply wells (PSWs) found to have VOCs above MCLs during EPA's HRS sampling.

Within the Hamlet of New Cassel, in the Town of North Hempstead, three plumes containing primarily dissolved tetrachloroethylene (PCE) and/or trichloroethylene (TCE) exit the NCIA. Two PSWs, Bowling Green Wells 1 and 2, are located approximately 1,000 feet downgradient of the NCIA in the Hamlet of Salisbury, Town of Hempstead. EPA's HRS sampling found the raw water from these PSWs to be contaminated with PCE (up to 69 micrograms per liter [μ g/L]) and TCE (up to 110 μ g/L). Water from the Bowling Green Wells 1 and 2 is treated for VOCs to achieve drinking water standards prior to distribution to the public. The Bowling Green Water District routinely conducts monitoring for VOC contamination.

In the Hamlet of Hicksville, within the town of Oyster Bay, raw water from PSWs 5-2 and 5-3, located approximately one mile downgradient of General Instruments and the former Sylvania sites was found to be contaminated with PCE (up to 41 μ g/L) and TCE (up to 59 μ g/L) during EPA HRS sampling. Water from these PSWs is treated for VOCs to achieve drinking water standards prior to distribution to the public.

During EPA's HRS sampling, Westbury Well 11, in the Village of Westbury, located in town of North Hempstead, was found to contain 0.59 ug/L of cis-1,2 dichloroethylene (cis 1,2-DCE), a common breakdown product of PCE and TCE, in the raw water. 123 Post Avenue is a site located upgradient of Westbury Well 11.

While this memorandum focuses on the aforementioned sites, there may be other potential sources within the vicinity of the NCHGW Site, which may have suspected or documented VOC releases and/or use (Figure 1). At the request of EPA's New York Remediation Branch, the Emergency Response Team (ERT) compiled the information within this memorandum to document past site remedial activities, current site conditions, and to provide recommendations for future work associated with the aforementioned sites and any potential releases associated with the NCHGW Site.

OBJECTIVE

Personnel from the Scientific, Engineering, Response, and Analytical Services (SERAS) contract were tasked by the United States EPA Environmental Response Team (ERT) Work Assignment Manager (WAM) to review and summarize historical data and generate a Scope of Work (SOW) that comprehensively outlines past and recommended future activities to facilitate remediation of contaminated groundwater from groundwater downgradient of the NCIA Off-property, General Instrument, former Sylvania, and 123 Post Avenue sites in association with the NCHGW Site.

ASSUMPTIONS

As NYSDEC has overseen a considerable amount of work at the NCIA Off-Property Groundwater Area, former Sylvania, General Instruments and 123 Post Avenue sites, the EPA has chosen to conduct this review on their background for a more complete understanding of the NCHGW Site. The sites discussed within this memorandum may have or are known to have contributed to the groundwater contamination at the NCHGW Site. For the NCIA Off-Property Groundwater Area, all known source areas within the NCIA are currently managed under NYSDEC orders and were therefore not considered within the scope of work for this technical memorandum.

SITE GEOLOGY

Geology and Hydrogeology

Four regional geologic units of the Atlantic Coastal Plain physiographic province underlie the NCHGW site. These units from youngest to oldest are (USGS, 1972a):

- Glacial deposits comprised of the Ronkonoma and/or Harbor Hill outwash (Upper Glacial);
- Magothy Formation and Matawan Group (Magothy);
- Clay member of the Raritan Formation; and
- Lloyd Sand member of the Raritan Formation (Lloyd).

Site investigations have encountered only two of these units: Upper Glacial and Magothy. Upper Glacial deposits (estimated to be 40- to 80-feet thick) consist of coarse-grained sands and gravels at the site. A distinct contact between the Upper Glacial and Magothy units has not been observed in the area. The underlying Magothy sediments (estimated to be approximately 600-feet thick) are characterized by sand and silty sand with discontinuous clay and silt layers. Sediments tend to fine downward in the Magothy Formation, except within the basal portion where coarse-grained sands and gravels are prevalent (USGS, 1972b).

Unconfined groundwater is generally found at the NCHGW site between 40 and 65 feet below ground surface (bgs) near the estimated boundary between the Upper Glacial and Magothy aquifers (LMS, 2000; EEI, 2010; and EPA, 2011). Horizontal hydraulic conductivities reported for the NCIA Off-property Groundwater Area ranged from 42 feet/day to 291 feet/day based on slug testing results (LMS, 2000). The lower hydraulic conductivities are consistent with the average value published for the upper Magothy Aquifer and the higher hydraulic conductivities are consistent with the average value published for the Upper Glacial Aquifer (USGS, 1972a). Vertical hydraulic conductivities of 1.3 and 3.1 feet/day, consistent with average published values (USGS, 1972a), were obtained for the Magothy aquifer during aquifer testing in the NCIA Off-property Groundwater Area (HDR, 2010). Storage values (0.003 and 0.006), also derived for the Magothy Aquifer during the aquifer testing in the NCIA Off-property Groundwater Area, were at the low end of the published range (0.0006 to 0.10) (USGS, 1983).

A generally east-west trending regional groundwater divide is located near the center of Long Island (USGS, 1972a). Groundwater flows northward or southward on either side of the divide. Local groundwater flow in the Upper Glacial and upper Magothy aquifers is to the south-southwest at the site, within depths (Table 2) above the production interval (463 to 674 feet bgs) of the PSWs in the vicinity (Figure 5). Local groundwater flow in the lower Magothy aquifer within the production interval is likely toward the PSWs when they are actively pumping. The Upper Glacial and Magothy aquifers are hydraulically connected beneath the site (HDR, 2010), consistent with regional characteristics (USGS, 1983). The vertical hydraulic gradient reported between shallow and deep wells at the site averages 0.003 feet/foot (HDR, 2010 and EEI, 2010).

SITE BACKGROUND

NCIA Off-Property Ground Water Area

The NCIA covers approximately 170 acres and is bounded by the Long Island Railroad to the north, Frost Street to the east, Old Country Road to the south, and Grand Boulevard to the southwest. The NCIA was developed for industrial use beginning in the 1950s through the 1970s. It has been reported that on-property leach pools or dry wells in the NCIA were generally used for disposal of wastewater until sewers were installed in the mid-1980s. There are currently an estimated 200 industrial and commercial businesses currently with the NCIA.

To date, the NYSDEC has investigated and listed 17 individual facilities within the NCIA as Class 2 (i.e., NYSDEC Superfund sites where action is required). Five of the facilities within the NCIA have been removed from the NYSDEC Registry and one has been reclassified to a Class 4 Site. Records of Decision (ROD) have been issued for the remaining Class 2 sites within the NCIA and have had varying degrees of remedial activities conducted. The individual sites within the NCIA are under NYSDEC oversight and as discussed earlier, these sites are considered outside the scope of the technical memorandum.

Releases to the groundwater from facilities within the NCIA have been found to contribute to groundwater contamination south of Old Country Road and Grand Boulevard. NYSDEC's NCIA third operable unit (OU3), the geographical designation assigned by NYSDEC as the NCIA Off-property

Groundwater Area, will be discussed herein. This area contains mostly residential properties, some commercial properties, two schools, the Bowling Green well field, and Nassau County properties. Figure 1 depicts the boundaries of the NYSDEC OU3 NCIA Off-property.

NCIA Off-Property Groundwater Area RI/FS

A remedial investigation (RI) involving additional groundwater sampling was conducted in the NCIA Off-property Groundwater Area from 1999 to 2000. Four new monitoring wells (NRMW-1 through NRMW-4) and four Hydropunch® borings (GWHP-01 through GWHP-04) were installed. Three rounds of groundwater monitoring (which included upgradient wells N-10462 and N-10459 in two of the rounds) and one round of Hydropunch® sampling were performed during the RI. Analytical results were compared with historical data to identify the nature and extent of the contamination in the vicinity of the NCIA. The RI data was then used to develop a feasibility study (FS) that evaluated potential remedial alternatives for groundwater contamination in the NCIA Off-property Groundwater Area. Findings of the RI/FS are as follows:

- PCE, TCE, trichloroethane (TCA) and their breakdown products were identified as the primary contaminants of concern. Three NCIA Off-property plumes were identified (eastern, central, and western); however, only two of the plumes (eastern and central) were found in the deepest depth interval (125 to 200 feet) that was examined during the RI (LMS, 2000).
- The area of impacted groundwater in the NCIA Off-property Groundwater Area is similar when comparing historic data to the RI data. The contaminant levels in the RI and historic data set are similar in the four depth ranges (0 to 64 feet, 65 to 99 feet, 100 to 124 feet and 125 to 200 ft bgs) that were comparatively analyzed to evaluate the vertical component. Comparison was noted to be difficult in the NCIA Off-property western plume area as little data had historically been collected in this area.
- Pumping at the Bowling Green Wells produces a significant downward vertical gradient across silts and clays in the deeper portion of the aquifer that tends to draw contaminants downward (LMS, 2000).
- A human health exposure pathway analysis was conducted for the off-property groundwater contamination in the NCIA Off-property Groundwater Area (LMS, 2000).
- Source areas for the NCIA Off-property plumes were attributed to the Class 2 sites in the NCIA. No off-property upgradient sources for the groundwater contamination were identified based on the RI data (LMS, 2000). Groundwater samples collected from upgradient well N-10459 did not contain any PCE or TCE and groundwater samples collected from upgradient well N-10462 contained low concentrations of PCE (8J and 14 μg/L). The locations of N-10459 and N-10462, plus other nearby upgradient wells are shown on Figure 7. Construction details for the upgradient wells are summarized in Table 3.

The FS identified and screened several remedial alternatives for the Upper Magothy aquifer between depths of 125 and 200 feet, including no further action; in-well vapor stripping; monitored natural attenuation; ex-situ extraction and treatment; and monitoring, assessment.

NCIA Off-property Groundwater Area ROD

NYSDEC's 2003 ROD for the NCIA Off-property Groundwater Area selected full plume remediation of upper and deep portion of the aquifer (to 225 ft bgs) with in-well vapor stripping/localized vapor treatment. Eleven remedial wells were proposed in the ROD as follows: 3 wells to 140 feet, 4 wells to 200 feet, and 4 wells to 225 feet (Figure 6). An element of the selected remedy was a contingency, where after pilot test data had been collected, the effectiveness of the in-well vapor stripping system would be evaluated and if for engineering or economic reasons, in-situ treatment should prove to be less practical, ex-situ extraction and treatment will be substituted without impairing the overall effectiveness of the treatment system. The contingency remedy was not included in the NYSDEC's alternative analysis in their 2000 FS.

Subsequently after the 2003 ROD, it was concluded based on the results of the pre-design investigation conducted in 2008 that heterogeneity (clay layers 5-feet thick or more as shown on Figure 6) and anisotropy (horizontal to vertical conductivity ratios exceeding 34,000) existed in the Upper Magothy aquifer within the proposed remedial area which would likely limit the effectiveness of groundwater circulation wells (D&B, 2009a). Therefore, NYSDEC utilized the contingency remedy and proceeded with the remedial technology of ex-situ extraction (commonly known as groundwater pump and treat [P&T]). NYSDEC has subsequently approved the final pre-design evaluation for P&T at the NCIA Off-property Groundwater Area. The Remedial Action Objectives (RAOs) of NYSDEC's selected remedy for the NCIA Off-property Groundwater Area are to contain and remediate the groundwater contamination such that groundwater exiting the NCIA Off-property Groundwater Area meets the NYSDEC Class GA Groundwater Quality and New York State drinking water standards.

NCIA Off-property Groundwater Area Pre-Remedial Design

NYSDEC conducted pre-remedial design activities from 2008 until 2011. During the completion of the 2011 pre-design investigation for the NCIA Off-property Groundwater Area, the NYSDEC requested that the EPA propose the NCHGW Site to the NPL. No further actions were taken by NYSDEC in the NCIA Off-property Groundwater Area after the pre-design investigation had been finalized and the NCHGW Site was finalized onto NPL in 2011

Three phases of pre-design were conducted to collect information to complete the remedial design for the NCIA Off-property Groundwater Area:

2008: Existing monitoring wells (MW-1 through MW-9), early warning wells (EW-1B, EW-1C, EW-2B, and EW-2C), and PSWs (Bowling Green Wells 1 and 2) were sampled. Seven temporary wells (TMW-1, TMW-2, TMW-4 through TMW-7, and TMW-9) and two Hydropunch® borings (TMW-3D and TMW-8D) were installed and sampled to depths of 285 and 500 feet, respectively (Figure 2). Six soil samples collected from boring TMW-3D (77-79 feet, 117-119 feet, 157-159 feet, 217-219 feet, 257-259 feet, and 282-284 feet) and five soil samples collected from boring TMW-8D (57-59 feet, 82-84 feet, 182-184 feet, 222-224 feet and 262-264 feet) were analyzed for particle size using American Society for Testing and Materials (ASTM) D422. Groundwater samples were analyzed for VOCs, ferrous iron, manganese, magnesium, calcium, total organic carbon, alkalinity, chlorides, nitrates, sulfates, carbon dioxide, and Temporary wells and Hydropunch® borings were gamma logged to identify methane. fine-grained (clay or silt) deposits. Soil samples collected from the Hydropunch® borings were analyzed for particle size distribution and vertical hydraulic conductivity. VOCs detected in groundwater samples included PCE, TCE, 1,1,1-TCA and their breakdown products. Total VOCs ranged up to 11,734 µg/L (185-foot sample from TMW-7). Depths to which elevated concentrations of VOCs were detected ranged up to 412 feet and exceeded the maximum depths

(140, 200, and 225 feet) of the treatment wells proposed in the ROD. It was concluded from the gamma logging results that one or more low permeability layers five-feet thick or more occur shallower than 285 feet beneath NCIA Off-property Groundwater Area (Figure 6). Vertical hydraulic conductivity tests (173 feet/day for the Upper Glacial aquifer and 0.1 foot/day for the Magothy aquifer) indicated the Magothy aquifer is highly anisotropic and that groundwater circulation wells with localized vapor treatment would likely not be an effective remedial technology for remaining VOCs from the Upper Magothy aquifer.

2009 to 2010: Analytical results for groundwater obtained since the initial RI in 2000 were evaluated for NCIA Off-property Groundwater Area. Based on review of the analytical results, three plumes (western, central, and eastern) were identified in NCIA Off-property Groundwater Area. The NCIA Off-property plumes are characterized by PCE and TCE and appear to be orientated in a south-southwesterly direction.

Water levels in five monitoring wells (MW-1, MW-4, MW-9, FSMW-14B, and FSMW-14C) were recorded at 15-minute intervals between December 3, 2009 and January 5, 2010. Water level fluctuations observed in the monitoring wells were influenced by pumping of the Bowling Green wells. Drawdown induced by the pumping ranged from 0.1 foot at well MW-4 (depth of 200 feet and distance of 1,175 feet) to 0.5 foot at well MW-9 (depth of 315 feet and distance of 1,075 feet).

■ 2010 to 2011: A 72-hour pumping test was performed at a constant rate of 100 gallons per minute (gpm) on well EX-1 (screened from 185 to 205 feet bgs). The pumping test data interpretation was compromised by interference from the Bowling Green wells and fluctuations in the discharge rate at the test well. Water level data indicated that shallow (130 to 140 feet bgs), intermediate (187 to 225 feet bgs) and deep (231 to 255 feet bgs) groundwater flow in the Upper Magothy aquifer was to the south or south-southwest. Significant changes were not observed in the shallow and deep groundwater flow during the pumping test; however, a cone of depression was apparent in the intermediate interval from which groundwater was being extracted during the pumping test. A pilot test was conducted, in conjunction with the pumping test, to evaluate three groundwater treatment scenarios: air stripping, granular activated carbon (GAC), and air stripping combined with GAC. Pilot test results indicate that aboveground use of air stripping, GAC, and air stripping with GAC are effective treatment technologies for the extracted groundwater.

Eleven monitoring wells (MW-10, MW-11S, MW-11D, MW-12 through MW-15, MW-16S, MW-16D, MW-17S, and MW-17D) and two extraction wells (EX-1 and EX-2) were installed. Fourteen existing monitoring wells, newly installed monitoring wells, and two extraction wells were sampled. The NCIA Off-property western, central, and eastern plumes were further delineated (Figures 8 and 9). The NCIA Off-property eastern plume is characterized by relatively higher concentrations of PCE relative to TCE while the NCIA Off-property western plume is comprised of greater concentrations of TCE compared to PCE. The NCIA Off-property central plume contains relatively little PCE and is characterized by relatively greater concentrations of TCA and 1,1-DCA compared to the NCIA Off-property eastern and western plumes. Data from the 72-hour aquifer pump test was also used to calculate aquifer characteristics, including anisotropic ratios, which were determined to be significantly lower (27 to 100) than the original estimate from the 2009 pre-design investigation. Calculated results for anisotropy were within the published ranges from several United States Geologic Survey (USGS) studies on Long Island.

Former Sylvania

The former Sylvania site was in operation from 1952 to 1967 for the research, development, and fabrication of nuclear elements under contracts with the Atomic Energy Commission. During the time of operations, former Sylvania utilized natural, enriched and depleted uranium (U) and also to a lesser extent utilized thorium (Th). In 1957, nuclear contract work for commercial and other government entities began primarily on the 70 Cantiague Rock Road property. VOCs consisting of primarily PCE and also nickel waste were generated by the manufacturing processes.

The site currently consists of properties 70, 100, and 140 Cantiague Rock Road, Hicksville, NY (Figure A-1, Appendix A). These parcels were occupied by Air Techniques, Inc., Magazine Distributors, Inc., and Gilbert Displays, respectively.

In April 1999, GTE Operations Support Incorporated (GTEOSI), which had acquired Sylvania Electric Products, entered into a Voluntary Agreement (VA) with the NYSDEC for investigation and remediation of soil and groundwater for unrestricted future use of the former Sylvania site. In January 2003, GTEOSI entered into a more inclusive Voluntary Cleanup Agreement (VCA) with the NYSDEC for the site. By 2007, under the Formerly Utilized Site Remedial Action Program (FUSRAP), a phased RI was initiated that is managed under the U.S. Army Corps of Engineers (USACE).

Former Sylvania RI Activities

Site investigations performed from 1987 to the present are summarized as follows:

- 1987: Thirty buried drums and contaminated soil were found on the 70 Property during construction of an addition to Building 4. Soil and drum samples collected by the Nassau County Department of Health (NCDOH) and NYSDEC indicated the presence of VOCs (primarily PCE and TCE), polychlorinated biphenyls (PCBs), and arsenic.
- 1991: An environmental assessment of the 140 Property was performed to identify problems that would restrict property use or financial liability for the current and future owners.
- 1992: A soil vapor survey (near boring B-1 where VOCs were detected after the drum removal), installation of four monitoring wells (MW-1 through MW-4), and groundwater sampling (four onproperty wells and one off-property well on the General Instrument property) were included in an investigation to classify the site for no further action (Figure A-2, Appendix A). The highest VOC concentration (31.2 parts per million) was detected north of the former drum area suggesting an upgradient source (ERM, 1993). A supplemental investigation was also performed in 1992 involving the drilling of three soil borings and one monitoring well (MW-5) (Figure A-2, Appendix A).
- 1997: Ground penetrating radar (GPR) survey and an exterior radiation survey were conducted to identify potential sampling locations and to map radiation levels that may indicate the presence of radioactive residuals.
- 1999: An investigation was conducted to evaluate the nature and extent of residual radionuclides (uranium and thorium), metals (nickel), and VOCs (PCE and TCE) in the soil and groundwater. The investigation included a soil gas survey to 4 feet in general areas, 8 feet in suspected radioactive contaminant areas, and 16 feet in leach pool areas. Groundwater sampling involved five on-property monitoring wells, three off-property monitoring wells (W-24, W-24D, and W-25 at the Nassau County Department of Public Works [NCDPW] to the north on Figure 4), and five temporary well points (TW-01 through TW-05). Samples were analyzed for VOCs, SVOCs, metals and

- radionuclides. Analytical results identified: isolated areas of above background radiation at each of the properties; isolated areas of above background metals on portions of the 100 and 140 Properties; and PCE and TCE in soil and groundwater at several locations on the 100 and 140 Properties.
- 2000: Analytical results of a supplemental investigation confirmed earlier findings from the 1999 investigation. This investigation included soil vapor surveys in the 70 and 100 Buildings (Figure A-1, Appendix A). The highest PCE and TCE concentrations in the exterior samples were detected at SB-170 (69.8 parts per million by volume [ppmv]) near the southeast corner of the 140 Building and SB-166 (14.1 ppmv) south of the 100 Building, respectively. The highest PCE and TCE concentrations in interior samples from the 140 Building were found in the southeast corner at SB-119 (272 ppmv) and SB-124 (9.7 ppmv), respectively. The highest PCE and TCE concentrations in interior samples from the 100 Building were detected in the northeast and central portions of the building at SB-142 (0.2 ppmv) and SB-124 (0.07 ppmv), respectively.
 - 2001 to 2003: A soil and groundwater investigation was performed to identify the vertical and horizontal extents of select contaminants and to delineate non-impacted areas for potential sheet pile placement. Seven monitoring wells were installed (MW-6 through MW-12) near the boundary of the site supplemented by 170 soil borings. PCE and lesser concentrations of TCE were detected in groundwater samples. The highest concentrations of PCE (up to 2,700 μg/L) were detected in wells MW-7 along the eastern boundary of the 100 Property and MW-10 along the southern boundary of the 70 Property. Radionuclides were not detected above background levels in groundwater samples.
 - Analytical results from monitoring conducted in August 2001 indicated PCE and to a lesser extent TCE were present in samples with the highest concentrations of PCE found in wells MW-5 (2,300 μg/L) and MW-7 (2,600 μg/L) located on the 100 and 70 Properties, respectively (Figure A-1, Appendix A). Nickel was detected in well MW-1 (0.2 milligrams per liter [mg/L]). Technetium-99 (Tc-99) was detected in wells MW-5 (52.1±10 picoCuries per liter [pCi/L]) and MW-7 (28.9 pCi/L). These detections were below the average Tc-99 value (900 pCi/L) which is assumed will yield the MCL of 4 millirem per year established by the EPA for beta emitters such as Tc-99.
 - In 2002, soil borings U-1 through U-147 were drilled and sampled in perimeter areas of potential excavations, potential sheet pile areas, and areas where vertical delineation was needed.
 - Based on the investigation results, the horizontal and vertical extents of nickel, radionuclides, and VOCs in the soil had been defined; however, in 2003, borings U-148 through U-174 were completed to further define the distribution of radionuclides and VOCs in potential mixed-waste areas. Wells MW-1, MW-2, MW-5, MW-6, and MW-7 were decommissioned in April 2003.
 - 2002 to 2004: A multi-phase RI was initiated to characterize the nature and extent of radionuclides, PCE, TCE, and nickel on the 70, 100, and 140 Properties as well as surrounding properties (NCDPW, General Instrument, Golf Course Driving Range [GCDR], Crown Lift, King Kullen, New York Blood Bank, and Waste Management). This investigation included two groundwater sampling events (October 2002 and March 2003) at the 12 on-property wells (MW-1 through MW-12) and groundwater sampling at 55 Waterloo Profiler® drive points (P-01 to P-18, P-20, P-23 to P-38, P-42 to P-47, P-49 to P-56, P-58, P-C to P-F, and P-H) between October 2002 and February 2004 (Figure A-3, Appendix A).
 - 2005: The groundwater investigation was continued with the on-property installation of additional profiling points (P-103, P-107, and P-108) (Figure A-3, Appendix A). Groundwater

samples were analyzed for radionuclides, VOCs, nickel, ferrous iron, total iron, ammonia, chloride, and total chlorine.

- 2005: A soil investigation was conducted at Survey Units (SU) SU-03, SU-04, and SU-05 in the eastern, western, and central portions, respectively, of the 100 Building. Sixty-four borings were advanced to 30 feet bgs (Figure A-4, Appendix A). Samples collected from the borings were analyzed for radionuclides, PCE, TCE, nickel (Ni), and beryllium (Be).
 - At SU-03: Thorium-232 (Th-232) and uranium-238 (U-238) concentrations exceeded site cleanup levels in the four-foot fill sample from boring 010. U-238 exceeded the site cleanup level in the 2-foot fill sample from boring 019. PCE (5.1J milligrams per kilogram [mg/kg]) exceeded the site cleanup level in the 4-foot sample from boring 013. Ni concentrations were below the site cleanup level. The concentrations of Be exceeded the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) #4046 value in several soil samples but were within the reported range for soils in New York State
 - At SU-04: U-238 exceeded the site cleanup level in the 6-foot fill sample from boring 020. VOCs and Ni were below the site cleanup levels in all soil samples. The concentrations of Be exceeded the TAGM value in several soil samples but were within the reported range for soils in New York State.
 - At SU-05: Radionuclides, VOCs, and Ni were below the site cleanup levels in all soil samples. The concentrations of Be exceeded the TAGM value in several soil samples but were within the reported range for soils in New York State.

Other investigations performed prior to, concurrent with, and subsequent to the systematic investigation included:

- A focused assessment at the 100 Building prior to the systematic investigation with a total of 19 soil borings at suspected floor drains, catch basins, and Historic Leach Pools (LPHs) LPH-01, LPH-03 through LPH-06 located either partially or entirely beneath the building, and outside the historic footprint of the building (Figures A-5 and A-6, Appendix A). Eleven borings had Th-232 and U-238 concentrations exceeding cleanup levels, three borings had PCE or TCE concentrations exceeding cleanup levels, and two borings had Ni concentrations exceeding cleanup levels. LPH-03 and LPH-04 had U-238 and/or PCE concentrations exceeding the site cleanup levels between depths of 6 and 22 feet.
- An investigation of contaminants remaining in soil following remediation of Cell 9 located south of Building 100. Fifteen soil borings (located in subcells D16, C17 to E17, and C18 to H18) were advanced inside the 100 Building during the investigation (Figure A-7, Appendix A). Five of the soil borings had contaminants (primarily U-238) above site cleanup levels between depths of 7 and 47 feet.
- Six borings (located in subcells F13, G13, F14, and G14) were advanced near soil boring 009 to further delineate PCE and TCE concentrations at SU-04 in the 100 Building (Figure A-4, Appendix A). TCE (1.202 mg/kg) exceeded the site cleanup level in the near-surface fill from boring DL01 in subcell G13.
- Eight additional borings (located in subcells I-19, J19, K17, L16, two in L17, M19, and N12) were advanced at the request of NYSDEC to supplement the systematic investigation of the 100 Building (Figure A-4, Appendix A). Seven of the borings had PCE concentrations above the site cleanup level.
- A 2,500 gallon underground storage tank (UST) (labeled as UST-H) was discovered approximately 5.5 feet beneath the concrete slab of the 100 Building. The UST contained approximately 150 gallons of liquid and 250 gallons of sludge with elevated concentrations of

PCE, TCE, cis-1,2-DCE, uranium, various metals, and a PCB (Arochlor 1260). An emulsifier was added to the UST to solidify its contents, abandon the UST in place, and protect the integrity of the building.

2005: A soil investigation was completed west of the 100 and 140 Buildings (SU-01) and south of the 100 Building (SU-02). Forty-nine soil borings were advanced to 30 feet bgs (Figure A-8, Appendix A). Samples collected from the soil borings were analyzed for radionuclides, PCE, TCE, Ni, and Be. Radionuclides, PCE, TCE, and Ni concentrations were below site cleanup levels in all soil samples. Be concentrations exceeded the TAGM value in several soil samples but were within the reported range for soils in New York State.

An assessment of LPHs was conducted in conjunction with the systematic investigation of SU-01 and SU-02. LPH-16 and LPH-17 fell within the boundaries of SU-01. LPH-12 through LPH-15 fell within the boundaries of SU-02. The results of this assessment did not indicate any contaminants above site cleanup levels in samples collected from these LPHs.

• 2005: Another soil investigation was performed at SU-06 and SU-07 beneath the eastern and western portions of the 140 Building. Thirty-seven soil borings were advanced to 30 feet bgs (Figure A-9, Appendix A). Samples collected from the soil borings were analyzed for radionuclides, PCE, TCE, Ni, and Be. Radionuclides, PCE, TCE, and Ni concentrations were below site cleanup levels in all samples. Be concentrations exceeded the TAGM value in several soil samples but were within the reported range for soils in New York State.

An assessment of LPHs was conducted in conjunction with the systematic investigation of Building 140 (Figure A-10, Appendix A). LPH-20 and LPH-21 fell within the boundaries of SU-06. LPH-34 fell within the boundaries of SU-07. The near-surface soil sample from boring 04 in LPH-20 contained a Ni concentration exceeding the site cleanup level. Soil boring 01 in LPH-21 had concentrations of Th-232, U-234, U-238, TCE, and PCE exceeding site cleanup levels from 16 to 19 feet bgs. The 10-foot soil sample from boring 05 in LPH-21 had a U-238 concentration exceeding the site cleanup level. Soil samples from LPH-34 did not have any contaminant concentrations exceeding site cleanup levels.

- 2005: A systematic soil investigation and limited excavation were performed along a 5 by 500 foot strip north of the 140 Building. Twenty-four soil borings were advanced to a depth of 8 feet. Soil samples were analyzed for radionuclides, PCE, TCE, Ni, and Be. Analytical results from the systematic investigation indicated Ni and U-238 concentrations in the range of or slightly greater than the site cleanup levels in shallow soils at subcells M03, N03, and O03. A limited excavation of soil to a depth of five feet at these subcells was extended east into subcell P03. Approximately 207,900 pounds of soil and debris were excavated and properly disposed off site (URS and Envirocon, Inc., 2005d). Additional excavation was performed at subcell N03 based on verification sampling results for Ni. Supplemental verification samples from the final excavation met site cleanup goals (Figures A-11 and A-12, Appendix A).
- 2005: PCE contamination remaining below remedial excavation depths was investigated at Cells 3, 4, 12, 14 and the GCDR. Thirty-five borings were advanced to 64 feet bgs (Figure A-13, Appendix A). The samples were analyzed for radionuclides, PCE, TCE, Ni, and Be. Radionuclides and Ni concentrations were below the site cleanup levels in all the samples. PCE and TCE concentrations exceeding site cleanup levels were detected in samples from the northern half of Cell 4, central portion of Cell 14, and along the western boundary of the GCDR. Be concentrations exceeded the TAGM value in several soil samples but were within the reported range for soils in New York State. An additional 14 borings were advanced on the GCDR (Figure A-14, Appendix A). Radionuclides,

- PCE, TCE, and Ni concentrations were below site cleanup levels in samples from those borings. Be concentrations were detected exceeding the TAGM value in several soil samples but were within the reported range for soils in New York State.
- 2005: A soil investigation was conducted to delineate remaining soil contamination following remediation at Cell 9. Soil samples collected from the excavation surfaces contained U-234 and U-238 in subcell E20 and Ni in subcell G20 exceeding site cleanup levels. Post backfill soil sample results indicated Ni concentrations exceeded site cleanup levels in subcell E20. Therefore, 64 soil borings were advanced to a depth of 64 feet for additional delineation in Cells 8 and 9 (Figure A-15, Appendix A). Samples collected from the soil borings were analyzed for radionuclides, PCE, TCE, Ni, and Be. Radionuclides, PCE, and TCE concentrations did not exceed site cleanup levels in the soil samples. Ni exceeded the site cleanup level in soil samples from several borings to a depth of 64 feet. Be was detected at a concentration exceeding the TAGM value in several soil samples but was within the reported range for soils in New York State.
- 2005: NYSDEC oversaw soil vapor surveys at SU-03, SU-04, SU-05, and SU-07. Elevated soil vapor readings were detected in the southern portion of SU-04 (central Building 100) but not detected in SU-05 (western half of Building 100) or SU-07 (western portion of Building 140).
 - A 2,500-gallon UST was discovered during installation of soil gas sampling points at SU-03 and SU-04 resulting in the installation of additional soil vapor points to the north and south of the UST. The UST was abandoned in place using an emulsifier to stabilize the contents.
- 2006 to 2010: Additional investigation of the former Sylvania site was managed by the USACE under the FUSRAP. Three phases of remedial investigation were performed to fill data gaps.
 - Phase I involved soil vapor (passive exterior and subslab at the 70, 100 and 140 Buildings), geophysical, walkover gamma radiation surveys; ambient indoor air (70, 100, and 140 Buildings), and transformer pad (south of the 70 Building) sampling; and a limited radiation survey in the 70 Building (Figures A-16 through A-19, Appendix A).
 - Phase II was conducted in Phases IIa and IIb. The work included: 22 soil borings at drains, leach pools, and dry wells not previously evaluated; 32 confirmatory soil borings at previously excavated remediation cells on the 70, 100, and 140 Properties; 149 soil borings at leach pools, drains, and dry wells not previously investigated on the 70, 100 and 140 Properties; 21 test trenches at geophysical anomalies identified during Phase I; and 7 concrete cores at radiological anomalies identified in Building 70 during Phase I (Figures A-20 and A-21, Appendix A).
 - Phase II was conducted in Phases IIa and IIb. The work included: 22 soil borings at drains, leach pools, and dry wells not previously evaluated; 32 confirmatory soil borings at previously excavated remediation cells on the 70, 100, and 140 Properties; 149 soil borings at leach pools, drains, and dry wells not previously investigated on the 70, 100 and 140 Properties; 21 test trenches at geophysical anomalies identified during Phase I; and 7 concrete cores at radiological anomalies identified in Building 70 during Phase I (Figures A-20 and A-21, Appendix A).
 - Phase III was designed to fill data gaps for the soil investigation (total metals in soil and identifying some floor drain locations) and to characterize groundwater contamination on site and off site at the GCDR. Thirty soil samples were collected from the 0 to 2-foot depth to support a risk assessment during Phase IIIa. Another 30 soil samples were also collected from the 2- to 8-foot depth at the same locations. Sample locations were equally spaced along a grid established across the site (Figure A-22, Appendix A). Smoke tests were performed to identify floor drain

discharge locations in Building 70. Phase IIIa included groundwater profiling of four borings where no wells were installed and the groundwater profiling of 23 borings where 19 deep wells and 4 shallow wells were installed, developed, and sampled. Phase IIIb involved additional groundwater profiling at 5 borings and the installation, development, and sampling of 24 shallow, 13 intermediate and 4 deep wells. Figure A-23 (Appendix A) shows the locations of the Phase III borings and wells.

- 2007: VCP multi-phase RI continued with the off-property installation of additional profiling points (P-102, P-104, P-110, P-112 to P-114, and P-118) (Figure A-3, Appendix A). Four sentinel monitoring wells (MWP-110-335, MWP-110-440, MWP-114-170, and MWP-114-290) were installed in the area of existing sentinel wells S-1-325 and S-1-450 (Figure A-24, Appendix A). Groundwater samples were analyzed for radionuclides, VOCs, nickel, ferrous iron, total iron, ammonia, chloride, and total chlorine.
- 2009: The VCP multi-phase RI concluded with the off-property installation of additional profiling points (P-119 and P-120) (Figure A-3, Appendix A). Groundwater samples were analyzed for radionuclides, VOCs, nickel, ferrous iron, total iron, ammonia, chloride, and total chlorine.
- 2010: A report on the VCP multi-phase RI was issued for the former Sylvania site. This report contained on- and off-property groundwater data collected on behalf of GTEOSI and contained data generated by General Instrument, NYSDEC, and USACE. These data were obtained during sampling of profile boreholes, monitoring wells, and Continuous Multi-Chamber Tubing (CMT) ports (Figures A-24 and A-25, Appendix A). Included in the report was a qualitative exposure assessment of fish and wildlife resources as well as human health.

Former Sylvania Remedial Activities

In 2003, a soil remedial excavation work plan designed to provide for unrestricted future use of the site was submitted to NYSDEC. Approved cleanup levels listed in the work plan are as follows:

- □ Total Uranium 100 picoCuries per gram (piC/g),
- \Box U-238 and U-234 50 piC/g,
- \Box Th-232 2.8 piC/g above the background concentration,
- \Box PCE 1.82 mg/kg,
- \Box TCE 0.70 mg/kg,
- \square Ni 560 mg/kg.

Characterization and confirmation samples collected during the remediation were to be analyzed for radionuclides, PCE, TCE, and Ni. Proposed excavation areas were west of Buildings 100 and 140, south of Building 100, and along the western boundary of the GCDR. The eastern portion of Building 140 would be demolished to accommodate the excavation activities.

Remedial activities conducted at the former Sylvania property are summarized below:

■ Drum and UST Removal: In 1987, a total of 57 drums (including the initial 30 drums) and 90 cubic yards of soil were removed from the 70 Property. The approximate location of the drum burial area is shown on Figure A-16, Appendix A. A geophysical survey, additional excavation, and post excavation soil sampling were also conducted at the 70 Property. In 2004, a letter report was issued documenting that a 6,000-gallon UST was encountered and removed during excavation of soil from Cell 2 (140 Property). In 2005, 2,500-gallon UST was discovered during installation of soil gas sampling points at SU-03 and SU-04 in the 100 Building. The UST was abandoned in place using an

emulsifier to stabilize the contents. Additional USTs were found and removed including one fuel oil UST in SU-01 (west of the 100 and 140 Buildings); three USTS (10,000-gallon diesel and two 2,000-gallon gasoline) at Cell 11 (southeast corner of Building 100), and diesel USTs along the south side of the 100 Building (EEI, 2007).

Soil Excavation and Disposal: During 2003 to 2004, Phase I remedial excavation was conducted at Cells 1 through 14. The cells were excavated to depths ranging up to 54 feet. Verification soil sampling was conducted at each cell along the final excavation surfaces. Focused sampling following backfilling, beginning at the final excavation depth and continuing to a depth of 64 feet, was also performed at some cells. Soil samples were analyzed for radionuclides, PCE, TCE, and Ni. Following the remedial excavation there was contamination remaining beneath Cells 3 and 4 (PCE and TCE at depths between 24 and 62 feet), Cell 6 (uranium at depths between 43 and 57 feet), and Cell 9 (uranium, nickel, and thorium to a lesser extent at depths between 24 and 64 feet).

General Instrument

The General Instrument facility is on an approximately 11.5 acre property in the Hamlet of Hicksville within the Town of Oyster Bay, Nassau County, NY. The facility has consisted of a research and design laboratory and a small manufacturing operation that produces semiconductors. The facility has also been used to produce radar systems and electronic equipment.

In December 1986, General Instrument entered into a Consent Order (CO) with the NYSDEC to conduct on- and off-property assessment work. In January 1989, General Instrument entered into another CO with the NYSDEC to conduct a RI/FS at the site. Two OUs were identified in the CO: OU-1 for on-property contaminated soil and OU-2 for contaminated groundwater. In March 1997, NYSDEC issued a ROD for OU-1 requiring soil vapor extraction for on-property soil. In June 2004, NYSDEC approved a groundwater circulation well technology as an interim remedial measure (IRM) for OU-2. An IRM system comprised of Unterdruck-Verdampfer-Brunnen (UVB) technology wells (UVB-1 to UBV-3) operated from 2004 to 2009. The UVB wells are currently inactive.

General Instrument RI Activities

RI work was conducted at the General Instrument site between 1981 and 2008 in accordance with the NYSDEC COs as follows:

- 1981: Two groundwater monitoring wells (W-1-75 and W-2D-120) were installed hydraulically downgradient from a 2,000-gallon waste solvent UST (Figure B-1, Appendix B). Analysis of groundwater samples collected from these monitoring wells in December 1981 and May 1982 identified high concentrations of TCE (up to 4,300 µg/L at W-1-75) and PCE (up to 2,700 µg/L at W-1-75) in the Upper Glacial aquifer.
- 1986 to 1987: Four additional monitoring wells (W-3-72, W-3-112, W-5-78, and W-6-79) were installed at the site to define the lateral extent of PCE and TCE in the groundwater (Figure B-1, Appendix B). Groundwater samples were collected from six on-property monitoring wells in June 1986 and July 1987. Samples from upgradient wells (W-3-72 and W-3-112) contained PCE (up to 491 μg/L) with lesser concentrations of TCE (up to 47.6 μg/L) suggesting an upgradient off-property source. The June 1986 groundwater samples from downgradient well W-6-79 contained a TCE concentration of 263 μg/L, suggesting the VOC plume had migrated from the former 2,000-gallon UST area to the southern boundary of the site or there was another source of TCE near well W-6-79.

- 1992: Ten monitoring wells (W-1D-120, W-2-71, W-7-71, W-8-71, W-10-71/120, W-11-70, W-12-70/120, and W-13-63) and six soil borings (TB-1 and TB-3 through TB-8) were installed during the Phase I RI (Figure B-1, Appendix B). The investigation identified three potential on-property sources of VOCs (Figure B-2, Appendix B):
 - □ Area A: 2,000-gallon waste solvent UST located north of the building,
 - □ Area B: 1,000-gallon waste solvent UST located west of the building, and
 - □ Area C: tunnel sump located in the building.

The highest concentrations of TCE and PCE were detected in soil samples from borings TB-1, TB-4, and TB-6 drilled in Area A and TB-8 drilled in Area B. Relatively high concentrations of 1,2-dichlorobenzene (1,2-DCB) (between 830 and 4,200 mg/kg) were also detected in soil samples from borings located in Area A (TB-1 between 8 and 32 feet) and Area B (TB-8 between 60 and 62 feet). Low concentrations of 1,2-DCB (0.8 and 1.1 mg/kg) were detected in soil samples from boring TB-7 drilled at the former wastewater lagoon.

- 1994: During the Phase II RI: one monitoring well (W-14-150) was installed in Area A, five soil samples (SS-1 through SS-5) were collected from the hazardous waste storage area, two samples (Sump-S and Sump-D) were collected at the tunnel sump (Area C), 17 monitoring wells were sampled, and a soil vapor survey was conducted along the western and southern property lines (Figure B-3, Appendix B). VOC impacts to groundwater in Area A appeared to extend to a depth between 130 and 150 feet based on Hydropunch® and well W-14-150 sampling data. Analytical results for soil indicated that the tunnel sump (up to 16,000 mg/kg TCE and up to 2,900J mg/kg PCE) was a potential source for groundwater impacts and the hazardous waste storage area (up to 2J mg/kg TCE and PCE not detected) was not a potential source. TCE and PCE concentrations were not quantified in the soil vapor samples; however, chlorinated VOCs included in the analyses were not detected in the samples. Analytical results indicated the highest concentrations of TCE were detected in the Upper Glacial Aquifer at wells downgradient of the former 2,000-gallon UST (14,000J μg/L in W-1-75 and 2,700 μg/L in W-2-71) and former 1,000-gallon UST (1,700J μg/L in W-10-71).
- 1997: During the Phase III RI, four monitoring wells (W-15-168, W-16-148, and W-17-130) and three soil borings (SB-1-97 through SB-3-97) were installed and sampled along the northern boundary of the King Kullen property (Figure B-4, Appendix B). Eleven on-property monitoring wells were sampled. The highest concentrations of TCE continued to be detected in the Upper Glacial aquifer beneath the former 2,000-gallon UST area (1,900 μg/L in W-1-75). The highest concentration of TCE detected in off-property groundwater from the Upper Magothy Aquifer beneath the King Kullen property was found in well W-16-148 (430 μg/L) located downgradient of Area A. A high concentration of PCE (230 μg/L) relative to TCE (36 μg/L) was detected in westernmost well W-15-168, suggesting the General Instrument plume merged with another plume from a separate VOC source.
- 2001: During the Phase IV RI, six soil borings (SB-4 through SB-9) and three nested monitoring wells (W-19-110/150, W-20-120/160, and W-21-150/180) were installed and sampled along the southern boundary of the King Kullen property (Figure B-4, Appendix B). The objective of this investigation was to evaluate the nature and extent of a VOC plume in the area of the proposed ozone-sparge system. Groundwater plumes from separate PCE and TCE sources, suspected to have migrated off the former Sylvania and General Instrument sites and merged hydraulically downgradient, were detected in wells installed during the Phase IV RI. Groundwater containing predominantly PCE, suspected of being from the former Sylvania site, was detected in wells W-19-110/150 and W-20-160. Groundwater containing a greater proportion of TCE, suspected of being from the General Instrument site, was detected in well W-20-120.

- 2002: Ten off-property monitoring wells (W-23-110, W-24-260, W-25-150/188, W-26-270, W-27-240/285, W-28-262, W-30-285, and W-31-95) and two on-property monitoring wells (W-22-95 and W-32-110) were installed during the Phase V RI (Figure B-4, Appendix B). Analytical results from the on-property wells suggested an off-property source of PCE located to the north of the General Instrument property and data from the off-property wells indicated commingling of the PCE and TCE plumes located hydraulically downgradient of the General Instrument site.
- 2003: Two off-property sentinel wells (S-1-325 and S-1-450) were installed and sampled as requested by NYSDEC (Figure B-4, Appendix B). The sentinel wells are located approximately 1,400 feet north of Hicksville Wells 5-2 and 5-3. Groundwater in well S-1-325 contained predominantly TCE (38 μg/L) while well S-1-450 contained similar concentrations of TCE (13 μg/L) and PCE (14 μg/L).
- 2007 to 2008: Seven Waterloo Profiler® points (WP-01 through WP-07) were installed during the Phase VI RI to determine the vertical extent of 1,2-DCB (a chemical marker distinguishing the General Instrument plume from the other plumes) (Figure A-3, Appendix A). Two monitoring well pairs (W-36-390/448 and W-37-325/385) were installed to confirm the profiling results (Figure B-4, Appendix B). The wells were first sampled in March 2009 and 1,2-DCB was not detected in any of the groundwater samples. Groundwater samples collected from three of the seven profiling points (WP-01 through WP-03) contained detectable concentrations of 1,2-DCB (up to 450 μg/L at WP-01). Elevated concentrations of PCE and TCE were detected in the profiling points to depths up to 493 feet. Predominant compounds detected in groundwater samples from well couplets W-36 and W-37 were TCE and PCE.

General Instruments Remedial Activities

In 2003, a pilot test of the UVB groundwater circulation well technology was completed at the NYS Park Service/Ackerman properties located south of the General Instrument site. The test involved one UVB well (UVB-1) and four observation wells screened within the middle and lower portions of the Upper Magothy Aquifer (Figure B-4, Appendix B). The pilot test ran for one month and was considered to be successful at intercepting and removing VOCs from the aquifer (ESC, 2004). The UVB well continued to operate while the full-scale system was being designed. An IRM system comprised of wells UVB-1 to UBV-3 operated from 2004 to 2009. The UVB wells are currently inactive.

Remedial activities conducted at the former General Instrument property are summarized below:

- Soil Excavation and Removal: In 1985, approximately 230 cubic yards of contaminated sludge and soil were removed during closure of a wastewater discharge lagoon. The lagoon (approximately 20-feet deep) was located along the northern property line of the site (Figure B-2, Appendix B). A composite sample of the sludge contained VOCs including TCE (660 parts per billion [ppb]) and 1,2-DCB (300 ppb) plus semivolatile organic compounds (SVOCs) including bis (2 ethyl hexyl) phthalate (52,000 ppb), and butyl phthalate (102 ppb) (FCHA, 1985). VOCs including TCE (622 ppb) were also detected in a composite sample from a 60-foot soil boring drilled in the northeast corner of the site (FCHA, 1985). Discrete samples from a second test boring drilled at the same location contained detectable concentrations of benzene and toluene (5 to 20 ppb) at depths between 14 and 61 feet. Bis (2 ethyl hexyl phthalate) (55 to 16,000 ppb), butyl phthalate (20 to 100 ppb), xylenes (46 to 77 ppb), and 1,2-DCB (11 to 45 ppb) were detected in composite samples collected from the floor and sidewalls of the finished excavation (FCHA, 1985).
- Groundwater Pump and Treat: A groundwater P&T system operated in Area A between 1982 and 1985. Groundwater was extracted at 20 gpm from well W-2-120. The recovered groundwater was

treated using an experimental carbonaceous absorbent material. Treated groundwater was recharged at 5 gpm along a gravel bed installed over the former UST pit and discharged at 15 gpm into the former wastewater storage lagoon. The system was shutdown because it could not handle the high levels of VOCs and suspended inorganic solids in the groundwater.

- Soil Vapor Extraction: During 1992 to 1993, soil vapor extraction (SVE) was proposed as an IRM for the VOC contaminated soil at the site. In March 1994, the SVE system began extracting from two intervals (an upper 30-foot zone and a lower 20-foot zone) between depths of 8 and 60 feet. In March 1995, the GAC canisters were replaced with a PADRE® system for improved treatment of the extracted VOC vapors. The system was subsequently upgraded as a result of the NYSDEC's ROD issued in March 1997 requiring SVE for remediation of OU-1. Confirmation testing performed in 2001 indicated Areas B and C were sufficiently remediated to discontinue SVE at those locations; however, additional SVE was needed to further remediate Area A. In 2002, subsequent testing in Areas B and C showed soil reached remedial goals (Stearns and Wheler, LLC, 2002) and SVE operations ceased in those areas with consent from the NYSDEC. In November 2009, the SVE system was shutdown pending results of closure testing in Area A. Review of the closure report issued in August 2010 identified 1,2-DCB, 1,4-DCB, ethylbenzene, and total xylenes exceeding TAGM values in soil samples collected between 14 and 38 feet from the southernmost boring B-5. Consequently, additional SVE wells were proposed for the vicinity of boring B-5 and the SVE system was scheduled to be restarted in fall of 2010 (WSP, 2010).
- Ozone Sparging: An IRM consisting of a KVA C-Sparger® system was proposed for the King Kullen property to treat the off-property groundwater plume using pulsed ozone injection. Three wells with 5-foot sparge points set at depths of 125, 150, and 180 feet bgs were proposed between wells W-18-150 and W-20-120/160, but the ozone sparging system was never installed because results of the Phase V RI indicated the IRM needed to be re-evaluated.
- UVB Groundwater Circulation: In 2004, a UVB groundwater circulation system began operation as IRM-2 to treat the off-property groundwater VOC plume. The system consisted of three UVB wells (UVB-1 through UVB-3) with two of the wells (UVB-1 and UVB-2) located on the NYS Park Service property and one of the wells (UVB-3) located on the King Kullen property (Figure B-4, Appendix B). The wells were a stacked-cell design with screened depths from 210 to 240 feet, 285 to 315 feet, and 360 to 380 feet. Each well was equipped with a below grade air stripper. The wells were initially pumped so that 30 to 35 gpm circulation rates were maintained at the upper and lower screened intervals. Operation of UVB-1 was stopped in June 2008 due to the uncontrollable flow of very fine-grained sand into the well. Wells UVB-2 and UVB-3 were manually turned off in May 2009.

123 Post Avenue

The 123 Post Avenue site property consists of a building that is currently used for a dry cleaning business and a parking area which surrounds the building. Since the 1950s, the property has been used for dry cleaning operations. 123 Post Avenue was placed on the NYS Registry of Inactive Hazardous Waste Disposal Sites in December 1998.

NYSDEC has divided the site into two operable units: OU-1 is the 0.2-acre dry cleaner property and OU-2 is the off-property contaminated groundwater. NYSDEC signed RODs for OU-1 and OU-2 in March 2003 and 2004, respectively. OU-1 was addressed by the NCDOH and the potential responsible party (PRP) with NYSDEC oversight. OU-2 is being addressed under the New York State Superfund Program.

123 Post Avenue RI Activities

Remedial investigation work showed site-related PCE contamination in soils and groundwater. On-property soils were found to be contaminated with PCE and groundwater was found to be contaminated with PCE and its breakdown products TCE and DCE. Indoor air was found to contain elevated concentrations of PCE at buildings north and northwest of the site. The source for the contamination was identified to be on-property drywells that had been improperly used to dispose waste PCE. In 2001, five monitor wells (OU2-1 through OU2-5) and 20 profile boreholes (P-1 through P-20) were sampled to define the off-property extent of the VOC groundwater contamination between the site and Westbury-Well 11 (Figure 14). Construction details for the wells are summarized in Table 2.

Remedial investigation work for OU-1 began in October 2000. In 2001, the PRP agreed to implement a full remedial program for OU-1. While the RI was in progress for OU-1, the owner installed an interim remedial measure (soil vapor extraction) to address the elevated levels of PCE in the on-property soil and indoor air at buildings to the north and northwest of the site.

Following the remedial investigation work conducted in 2001, additional remedial investigation at OU-2 was performed between 2006 and 2012. During that period: 29 profile boreholes (P-1 through P-29), 7 temporary wells (TP-1 through TP-6 and TP-9), 13 monitor wells (OU2-6, OU2-7A, OU2-7B, OU2-8A, OU2-8B, OU2-8C, OU2-9A, OU2-9B, OU2-9C, OU2-10A, OU2-10B, OU2-10C, OU2-11), two soil borings (SB-1 and SB-2), and three injection wells (IW-1, IW-3, and IW-4) were installed and sampled (Figures 15 through 17). The work plan for an 18-week pilot test program for OU-2 was submitted to NYSDEC. The selected remedy for OU-2 presented in the work plan is in-situ chemical oxidation. Permanganate will be injected (at pilot test wells IW-1, IW-3 and IW-4) into the impacted aquifer to the south of the site near the intersection of Lennox Avenue and South Grand Street in Westbury, NY.

123 Post Avenue Remedial Activities

Interim remedial measures conducted for OU-1 consisted of soil excavation and SVE to address the subsurface contamination and portable air purifiers to address the indoor air contamination. Indoor levels of PCE dropped below New York State Department of Health (NYSDOH) guidelines following operation of the SVE system. No further action was approved by NYSDEC for OU-1 groundwater. However, NYSDEC required continued operation of the SVE system to eliminate or mitigate the threat of any future air or groundwater impacts. An air sparging contingency plan was developed for OU-1 in case groundwater concentrations rebounded. Implementation of in-situ chemical oxidation for OU-2 is ongoing.

CURRENT NATURE AND EXTENT OF CONTAMINATION

The evaluation of historical analytical results focused herein on PCE and TCE that are present at the relative greatest concentrations in groundwater samples collected from PSWs during the HRS event in August 2010. Groundwater plumes for PCE and TCE were mapped using concentrations exceeding $100~\mu g/L$ that were detected during sampling in the area between 2007 and 2012. Historically, a $100~\mu g/L$ isoconcentration contour was used to define the extents of the groundwater plumes in the NCIA (LMS, 2000; NYSDEC, 2003; HDR, 2010 and 2011). On Figures 8 through 13, the maps and cross sections show the inferred lateral and vertical extents of the PCE and TCE groundwater plumes migrating from the 123 Post Avenue, NCIA Off-property Groundwater Area, former Sylvania, and General Instrument sites. VOC data plotted on the maps and cross sections are tabulated in Appendix C.

NCIA Off-property Ground Water Area

Groundwater

Three groundwater plumes (NCIA Off-property eastern, central, and western plumes) characterized by PCE and TCE are present in NCIA Off-property Groundwater area. The NCIA Off-property eastern and western plumes are more extensive laterally than the NCIA Off-property central plume (Figure 18). These three plumes are generally oriented in a south-southwest direction consistent with regional groundwater flow. A downward hydraulic gradient appears to drive the three plumes to greater depths as they migrate through the NCIA Off-property Groundwater Area.

- NCIA Off-property Eastern Plume: Wells EW-1A/B, EX-1, FWMW-13A to 13C, FWMW-14A to 14C, GWHP-2, MW-14, MW-16D, MW-17D, TMW-7, and TMW-8D are located in the NCIA Off-property eastern plume (Figure 18). The NCIA Off-property eastern plume is characterized by a generally higher molar fraction of PCE relative to TCE at depths less than approximately 205 feet (Figure 18). Molar fractions of TCE compared to PCE at depths greater than approximately 205 feet (Figure 18). Molar fractions of TCE and PCE detected in the NCIA Off-property eastern plume groundwater below 205 feet are similar to those found in wells to the east. During the most recent sampling of the NCIA Off-property eastern plume in April 2011, the highest concentrations of PCE (16,000 μg/L) and TCE (1,800 μg/L) were detected in well FSMW-14A screened in the Upper Magothy Aquifer from 119 to 129 feet bgs. Bowling Green Wells 1 and 2 contain PCE and TCE (Figure 18) that may be from one or more of the NCIA Off-property plumes (Figures 8 through 11).
- NCIA Off-property Central Plume: The wells located in the NCIA Off-property central plume include MW-1 through MW-4, MW-6, MW-9, MW-10, and TMW-5 (Figure 18). The NCIA Off-property central plume contains a generally higher molar fraction of TCE and DCE compared to PCE (Figure 18). PCE and TCE concentrations detected in the NCIA Off-property central plume appear to be commingled with those of the NCIA Off-property western plume below a depth of approximately 150 feet bgs at the NCIA Off-property Groundwater Area. The highest concentration of PCE (330 μg/L) was detected in the Upper Magothy Aquifer at 165 feet bgs in TMW-5 (August 2008) and the highest concentration of TCE (1,800 μg/L) was detected in the Upper Magothy Aquifer at 128 to 130 feet bgs and 138 to 140 feet bgs in GWHP-01 (January 2000). Relatively high concentrations of 1,1,1-TCA (up to 1,400 μg/L at TMW-5) are also detected in the NCIA Off-property central plume based on August 2008 data.
- NCIA Off-property Western Plume: This plume may extend to the north-northeast beneath the residential area bounded by NCIA on the north, Arlington Street on the west, Old Country Road on the south, and Belmont Place on the east. Wells EX-2, MW-7, MW-11-S/D, MW-12, MW-13, TMW-1, TMW-2, TMW-3D, and TMW-9D are located in the NCIA Off-property western plume (Figure 18). The NCIA Off-property western plume has a generally higher molar fraction of TCE compared to PCE with occasional higher molar fractions of PCE compared to TCE (Figure 18). The highest concentration of TCE (5,100 μg/L) was detected in the Upper Magothy Aquifer at 225 feet bgs in TMW-2 (August 2008) located along the western side of the plume. The highest concentration of PCE (3,700 μg/L) was detected in the Upper Magothy Aquifer at 225 feet bgs in TMW-1 (August 2008) located in the southern portion of the plume. PCE and TCE appear to extend no deeper than 450 feet in the NCIA Off-property western plume beneath the NCIA Off-property Groundwater Area (Figures 10 and 11).

Former Sylvania

Soil

PCE, TCE, nickel, uranium, and thorium were identified as FUSRAP wastes in soil during the RI (EEI, 2010). Based on analytical results from the RI performed by USACE and remedial excavation sampling conducted by GTEOSI:

- PCE and TCE concentrations exceeding 1,000 µg/kg were detected in soil beneath and east of the 100 and 140 Buildings; between the 70 and 140 Buildings; beneath the 70 Building, beneath Cell 14 in the GCDR (Figures A-26 and A-27, Appendix A).
- Nickel concentrations exceeding the background threshold value (BTV) of 16.1 mg/kg were detected in soil samples from beneath and south of the 100 Building, on the 70 Building property near the source area found south of the 100 Building, and in isolated locations beneath the 140 Building (Figures A-28 and A-29, Appendix A).
- Uranium concentrations exceeding BTV values (U-234 of 0.81 pCi/g, U-235 of 0.091 pCi/g, and U-238 of 0.901 pCi/g) were detected in soil at one or more isolated locations beneath and east of the 70 and 100 Buildings extending beneath the GCDR; between the 70 and 100 Buildings; and beneath, south and east of the 140 Building (Figures A-30 and A-31, Appendix A).
- Thorium concentrations exceeding three times the BTV values (Th-228 of 1.2 pCi/g, Th-230 of 1.02 pCi/g, and Th-232 of 1.18pCi/g) were detected in soil samples from isolated locations beneath and south of the 100 Building and beneath the 140 Building at boring LPH-21 (Figure A-32, Appendix A).

Groundwater

PCE, TCE, nickel, and uranium were identified as FUSRAP wastes in groundwater during the RI (EEI, 2010). Based on analytical results from RIs conducted by the USACE and GTEOSI:

- Upgradient groundwater contained low concentrations of VOCs which are thought to have originated on the NCDPW and GCDR properties or other sources further upgradient. Former Sylvania onproperty groundwater data collected in April 2010 indicated the area east of Building 100 is a source of VOCs contamination with the highest concentrations of PCE (1,800 µg/L) and TCE (91 µg/L) detected in shallow groundwater collected from well MW-22S. Lesser source areas for VOCs are located under and adjacent to the 70, 100, and 140 Buildings (Figures A-26 and A-27, Appendix A). Some of the PCE and TCE released in the source area east of the 100 Building was detected under the VOCs that have migrated off the General Instrument site (MPI, 2011). The former Sylvania offproperty groundwater containing TCE and PCE from the former Sylvania site has merged with separate VOCs plumes from the General Instrument site and other unknown sources (Figure A-33, Appendix A). The areal extent of TCE and PCE from the former Sylvania site in groundwater can be inferred from higher molar fractions of PCE found in off-property wells. Wells located in the offproperty TCE/PCE plume include: MWP-110-440, W-16-148, W-19-110/150, W-26-270, W-30-285, W-31-95, PW-02-07, PW-05-07, and PW-06-07. Other VOCs detected in off-property wells that do not appear to have originated from the former Sylvania site include 1,1,1-TCA, 1,1-DCA, 1,1-DCE, chloroform, carbon tetrachloride and ethylbenzene. VOCs detected in predominantly intermediatedepth groundwater samples from on-property wells that are thought to have originated from upgradient sources are 1,1,1-TCE, 1,1-DCE, and chloroform.
- Nickel impacts to groundwater are mainly limited to the southern portion of the Sylvania site. Nickel concentrations (102 to 1,550 μg/L) that exceed the NYSDEC GA Groundwater Standard (100 μg/L)

were found in shallow- to intermediate-depth groundwater extending from the source area south of the 100 Building to an area slightly past the southern boundary of the 70 Property (Figures A-28 and A-29, Appendix A). Dissolved nickel concentrations exceeding the NYSDEC GA Groundwater Standard were detected in April 2010 samples from wells MW-08, MW-23S, MW-26I, MW-27S, MW-31D, MW-44S, and MW-50I. The maximum detected concentration of nickel was 2,240 mg/L in MW-23S.

- A chromium concentration (60.4 μg/L) exceeding the NYSDEC GA Groundwater Standard (50 μg/L) was detected in the April 2010 shallow sample from well W-31-95. In addition, chromium concentrations (91.5 to 180 μg/L) exceeding the NYSDEC GA Groundwater Standard were detected in shallow upgradient wells (W-2-70, W-10-120, and W-12-70) suggesting the General Instrument site is a source for the chromium. The deep groundwater sample from downgradient well MW-36-448 also contained a chromium concentration (62 μg/L) that exceeded the NYSDEC GA Groundwater Standard.
- Dissolved and total sodium concentrations (20,100 to 491,000 μg/L) exceeding the NYSDEC GW GA Standard (20,000 μg/L) were detected in April 2010 samples from several on-property and off-property wells. The source for the sodium is considered to be a salt pile on the NCDPW site to the north.
- On-property uranium concentrations exceeding the MCL (27 piC/L) are limited to the northeast corner of the 70 Building Property (wells MW-18S/I, MW20S, and MW-41S) where a recharge basin was formerly located. No off-property uranium impacts, other than an isolated area (well MW-33S) on the GCDR, were identified based on the April 2010 data. Thorium was not detected at concentrations exceeding the MCL in any April 2010 groundwater samples.

General Instrument

Soil

- Two waste solvent USTs (Areas A and B) and a tunnel sump (Area C) have been identified at the General Instrument site as potential sources for TCE, PCE, 1,2-DCB, and 1,1-DCE (Figure B-3, Appendix B). VOC contaminated soil in Areas A and B was remediated by SVE; whereas, VOC contaminated soil in Area C was excavated. Based on historical data, it does not appear these USTs areas are contributing significant VOC mass to the on-property groundwater.
- There may be an unknown source for chromium in soil at the General Instrument site. Chromium concentrations exceeding the NYSDEC GA Groundwater Standard were detected in on- and off-property wells.

Groundwater

- Releases to groundwater from the three source areas on the General Instrument site appear to be characterized by a generally higher ratio of TCE to PCE (Stearns & Wheler, LLC, 1992 and 1997).
 - Semi-annual groundwater monitoring data indicate that TCE and PCE concentrations exceeding $100 \mu g/L$ have not been detected in on-property monitor wells since 2005 (WSP Engineering, 2010).
 - Off-property groundwater containing TCE and PCE from the General Instrument site is commingled with the VOCs plumes from the former Sylvania site and other unknown sources (Figure A-33, Appendix A).

- Releases from Areas A and B also contain significant concentrations of 1,2-DCB. Plan and cross-section views of the 1,2-DCB distribution in groundwater are shown on Figures B-5 and B-6 (Appendix B). The areal extent of TCE and PCE in groundwater from the General Instrument site can be inferred using the 1,2-DCB occurrence and higher molar fraction of TCE found in off-property wells. Monitoring wells and profiling borings located in the General Instrument TCE/PCE plume include: WP-01 through WP-03, W-1-75/120, W-10-71/120, W-20-120/160, W-22-95, W-23-110, W-25-150/188, W-26-270, W-27-240/285, and W-30-285.
- Chromium concentrations (91.5 to 180 µg/L) exceeding the NYSDEC GA Groundwater Standard were detected in on-property shallow wells (W-2-70, W-10-120, and W-12-70) and off-property wells W-31-95 and MW-36-448 during sampling conducted in 2010 for the former Sylvania site. A source for the chromium is currently unknown.

123 Post Avenue

Groundwater analytical results from March 2010 for wells OU2-1 and OU2-2 (USGS database for Nassau County) and from January 2012 (Dvirka and Bartilucci, 2012), indicated off-property wells OU2-1 through OU2-11 contained concentrations of PCE up to 3,900 µg/L, TCE up to 44 µg/L, and DCE up to 130 µg/L. A groundwater sample collected for the HRS evaluation in August 2010 from nearby Westbury-Well 11 contained TCE (1.7 µg/L) and DCE (0.59 µg/L). Molar fractions for total ethenes calculated using the analytical data are plotted on Figure 19. Based on review of Figure 19, it appears unlikely the PCE and DCE concentrations found in Westbury-Well 11 are related to the 123 Post Avenue site.

EXISTING DATA GAPS

An evaluation of the information presented herein indicates the following data gaps should be considered when evaluating the future approach for the NCIA Off-property Groundwater Area, former Sylvania, General Instrument, and 123 Post Avenue sites:

NCIA Off-property Ground Water Area

Groundwater

Data gaps for NCIA Off-property Groundwater Area are:

- A more expansive monitoring well network should be installed in the NCIA Off-property Groundwater Area to monitor any future remedial activities. The network of wells will aid in monitoring the vertical and horizontal extents of the NCIA Off-property western, central and eastern plumes. Additionally, a network of monitoring wells should be installed further north and south of the NCIA Off-property Groundwater Area.
- Further evaluation needs to be conducted of the high molar fraction of TCE in the lower portion of the NCIA Off-property eastern plume.
- During the remedial design phase, ground water should be analyzed for the Target Analyte List (TAL) metals and hexavalent chromium (CrVI) in groundwater beneath the NCIA Off-property Groundwater Area.
- Concentrations of electron acceptors and metabolic byproducts in background and contaminated groundwater that can be used to evaluate the natural attenuation of dissolved VOCs in groundwater beneath NCIA Off-property Groundwater Area have not been evaluated.

- Prior aquifer pumping tests should be reviewed during design investigations to evaluate interference from the Bowling Green wells and fluctuations in discharge rate that may have influenced the results during the 72-hour pump test such that specific response (i.e., unconfined or leaky) of the Magothy aquifer to pumping is unknown.
- The P&T system flow rate should be estimated for containment and remediation of the three finger plumes beneath NCIA Off-property Groundwater Area during design investigations. The anticipated effect of the Bowling Green wells on the P&T system should be evaluated. Maximum sustained flow rates for existing extraction wells (EX-1 and EX-2) in NCIA Off-property Groundwater Area have not been determined.
- As part of a design investigation, ground water deeper than 225 feet in the NCIA Off-property Groundwater Area should be analyzed.
- Human health assessment has not been prepared for the NCIA Off-property Groundwater Area.

Former Sylvania

Soil

Remedial alternatives for on-property soil have not been evaluated through a feasibility study that meets technical requirements under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA).

Groundwater

The data gaps for groundwater are:

- A groundwater RI/FS should be completed.
- The source of the elevated concentrations of TCE detected in intermediate to deep groundwater beneath the western portion of the 70 Building Property (in samples from profile borings for MW-25D and MW-30D and monitor well MW-30I) should be further evaluated.
- The source of the elevated concentration of TCE detected in deep groundwater beneath the central portion of the 100 Building Property (in samples from profile borings for MW-24DD and MW-27DD) should be further evaluated.
- The source of the elevated concentration of nickel detected in intermediate groundwater beneath the western portion of the 70 Building Property (in samples from the profile boring for MW-25D and monitor well MW-25S) should be further evaluated.
- The source of the elevated concentrations of PCE, nickel, and uranium detected beneath remedial cell 9 (in samples from both profile boring MW-24S and well MW-24S) should be further evaluated.
- Concentrations of alternate electron acceptors and metabolic byproducts in background and contaminated groundwater that can be used to evaluate the natural attenuation of dissolved VOCs migrating from the former Sylvania site should be further evaluated.

- Existing groundwater conditions and monitor well locations should be determined at the properties
 with chlorinated solvent usage (as noted in Figure 1) located downgradient and along the path of the
 Sylvania VOC plume.
- The southern and western extents of the off-property groundwater contamination should be further delineated.

General Instrument

Soil

Data gaps for soil include:

- Remedial confirmation of soil sampling results and the outcome of the pending closure request for Area A should be reviewed when available.
- It is unknown if additional USTs are buried at the site. In addition to the USTs removed from Areas A and B, a 10,000-gallon storage tank was located to the east of the former wastewater pond on the General Instrument site (Figure B-1, Appendix B). NYSDEC does not have a closure report for this UST, but believes the UST to be a fuel oil tank.
- A potential chromium source may exist in soil beneath the site. Chromium concentrations exceeding the NYSDEC GA Groundwater Standard were detected in groundwater samples collected from onproperty and off-property wells during sampling conducted in 2010 by a consultant for the former Sylvania site.

Groundwater

The data gaps for groundwater are:

- A groundwater RI/FS should be completed.
 - The RI/FS should include an investigation into the presence of the dissolved chromium detected in groundwater samples collected in 2010 from on-property and off-property wells.
- A human health risk assessment for on-property groundwater contamination should be conducted. An ecological risk assessment should also be conducted, if determined necessary by EPA.
- The RI sampling should include analysis for concentrations of alternate electron acceptors and metabolic byproducts in background and contaminated groundwater that can be used to evaluate the natural attenuation of dissolved VOCs migrating from the General Instrument site.
- A final remedial strategy for off-property groundwater should be selected after completion of an RI/FS.

123 Post Avenue

Soil

There were no data gaps identified for soil at OU-1 and OU-2.

Groundwater

The data gaps for groundwater are:

- The vertical and lateral extent of the OU-2 plume should be further delineated.
- A human health risk exposure assessments has not been conducted for the off-property groundwater contamination.

SCOPE OF WORK

This SOW has been prepared to fill data gaps that were identified by evaluating site background, current nature and extent of contamination, and data gaps at the NCIA Off-property Groundwater Area, former Sylvania, General Instrument, and 123 Post Avenue sites.

NCIA Off-property Groundwater Area

Groundwater

- Vertical profiling should be conducted at/near the Bowling Green wellfield and in the area up gradient of the well field.
- A network of groundwater monitoring wells should be installed at multiple locations to monitor progress of future remedial efforts in the NCIA Off-property Groundwater Area as part of the remedial design phase. These locations will be incorporated into a long term monitoring program. The monitoring well network should include well locations that are west of the NCIA Off-property western plume, east of the NCIA Off-property eastern plume, and upgradient of the NCIA. For assessment of the vertical extent, this monitoring well network and also additional locations in the NCIA Off-property central plume should also be extended to depths past the screened interval at Bowling Green Well 1 and 2.

A Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) will need to be prepared for this work.

- Groundwater samples should also be collected from the newly installed and existing monitor wells at the NCIA Off-property Groundwater Area in accordance with the EPA Region 2 document entitled *Groundwater Sampling Procedure, Low Stress (Low-Flow) Purging and Sampling* during pre-design investigations. The investigation should include at least two rounds of sampling, spaced three months apart. The first round samples should be analyzed for TCL VOCs using EPA Method 8260B and total/dissolved TAL metals including CrVI using EPA Methods 6010B/7470 and 7199, respectively. Second round samples should be analyzed for TCL VOCs and selected samples should also be analyzed for natural attenuation indicator parameters: pH, dissolved oxygen (DO), electrical conductivity (EC), temperature, turbidity, oxidation-reduction potential (ORP), total organic carbon by SW 9060, nitrate and nitrite by SW 353.2, sulfate by SW 375.4, sulfide by SW 376.2, chloride by SW 352.2, ferrous iron by SM 3500Fe-D, manganese by EPA Method 6010B, alkalinity by SW 310.1, volatile fatty acids by SW 5560C, hydrogen by RSK-194, and carbon dioxide, methane, and ethane/ethene by SW 3810. The frequency and chemical analyses should be reviewed and adjusted, if necessary, after a work plan has been developed.
- Step-drawdown tests should be conducted using wells EX-1 and EX-2, designed to remove interference from the nearby PSWs.
- Groundwater flow and contaminant transport modeling should be conducted in a pre-design investigation to:
 - □ Assist in the P&T system design for hydraulic containment of the VOC plumes; and

- Evaluate the effects of the nearby PSWs on that system.
- The existing P&T strategy should be expanded to address the VOC contaminated groundwater below a depth of 225 feet at NCIA Off-property Groundwater Area.
- Update the human health risk assessment using data that has been collected post NYSDEC's 2003 ROD for the groundwater contamination in the NCIA Off-property Groundwater Area. An ecological risk assessment should also be conducted, if determined necessary by EPA.

Former Sylvania

Soil

 USACE FUSRAP program plans to model site groundwater in preparation for scoping the offproperty groundwater assessment. The existing data gaps for soil should be re-evaluated to determine whether additional on-property assessment is necessary, based on the modeling results (EEI, 2010).

Groundwater

- USACE plans should continue for off-property groundwater characterization which includes the drilling and sampling of 14 groundwater profile boreholes ranging in depth from 200 to 600 feet, installation of 29 monitor wells field screening of the profile boreholes for VOCs using an AQR Color-Tec[®] kit, sampling of the profile boreholes and monitor wells for VOCs and Ni, and selected groundwater samples will also be analyzed for total uranium (LBGI and EEI, 2011).
- USACE plans should continue for sampling of selected wells (during a second round of monitoring) for natural attenuation indicator parameters: pH, DO, EC, temperature, ORP, nitrate, nitrite, sulfate, chloride, sulfide, major cations, ferrous iron and manganese, alkalinity, volatile fatty acids, carbon dioxide, methane, hydrogen, ethane/ethene, total organic carbon, and *Dehalococcoides spp.* (LBGI and EEI, 2011).
- USACE plans should continue for preparation of a Feasibility Study Report to address the onproperty soil and groundwater contamination and off-property groundwater contamination (LBGI and EEI, 2011).

General Instrument

Soil and Groundwater

- All on-property wells and selected off-property wells (W-31-95 and MW-36-448) should be resampled to confirm total chromium concentrations from the 2010 sampling event conducted by the consultant for the former Sylvania site. Groundwater samples should be analyzed for total and dissolved chromium and CrVI using EPA Methods 6010C and 7199, respectively. If total chromium and CrVI concentrations exceeding the NYSDEC GA Groundwater Standard (50 μg/L) are detected in the on-property groundwater samples, then soil borings should be drilled and sampled at five-foot intervals to groundwater (approximately 60 feet bgs) in the vicinity of the well containing the highest concentrations of chromium and CrVI to identify a source. The soil samples should be analyzed for total chromium and CrVI using EPA Methods 6010C and 7196/7199, respectively.
- Low-flow groundwater samples should be collected from site-related wells and analyzed for TCL VOCs and natural attenuation indicator parameters: pH, DO, EC, temperature, ORP, nitrate, nitrite, sulfate, chloride, sulfide, major cations, ferrous iron and manganese, alkalinity, volatile fatty acids, carbon dioxide, methane, hydrogen, ethane/ethene, and total organic carbon.

• A human health assessment should be conducted for the on-property groundwater contamination. An ecological risk assessment should also be conducted, if determined necessary by EPA.

123 Post Avenue

Soil

No additional investigation or remediation is recommended for soil in OU-1 and OU-2.

Groundwater

- Installation of a groundwater monitoring well near the intersection of Lafayette Avenue and South Grand Street to evaluate groundwater quality impacting the public supply well. Use of either a multiport system or cluster of wells to gather data at multiple depth intervals. The well should be drilled, field screened, constructed, and developed in the same manner as those proposed for the NCIA Off-property Groundwater Area. Following installation, the well should be included in the monitoring program that has been implemented for the other wells in OU-2 for 123 Post Avenue.
- The results for the in-situ oxidation pilot test being conducted in OU-2 should be evaluated.

REFERENCES

Dvirka and Bartilucci (D&B), 2009a, Pre-Design Investigation Report, New Cassel Industrial Area Site, Operable Unit No. 3, Town of North Hempstead, Nassau County, New York, Site No. 1-30-043, Dated June 2009. , 2009b, Vertical Profile Sample Locations and VOC Results – 2001, Figure 1-A, 123 Post Avenue – Operable Unit 2 Remedial Design, Westbury, New York, dated May 1, 2009. ___, 2009c, Vertical Profile Sample Locations and VOC Results – 2006, Figure 1-B, 123 Post Avenue – Operable Unit 2 Remedial Design, Westbury, New York, dated May 1, 2009. , 2010, Estimated Areal Extent of VOC Plume Based on Existing Data, Figure 1, 123 Post Avenue – Operable Unit 2 Remedial Design, Westbury, New York, dated June 10, 2010. , 2012, Monitoring Well Location Map, Figure 1, 123 Post Avenue – Operable Unit 2 Remedial Design, Westbury, New York, included with January 2012 data table. Ecology and Environment, Inc. (EEI), 2007, Final Remedial Investigation Work Plan (Phases I and II) for the Sylvania Corning FUSRAP Site, Hicksville, County of Nassau, New York, Dated March 2007. , 2008, Final Remedial Investigation Work Plan (Phase III Groundwater) for the Sylvania Corning FUSRAP Site, Hicksville, County of Nassau, New York, Dated October 2008. _, 2010, Final Remedial Investigation for the Sylvania Corning FUSRAP Site, Hicksville, County of Nassau, New York, Dated September 2010. ERM-Northeast (ERM), 1993, Phase II Investigation Report, Air Techniques Site, Hicksville, Nassau County, New York, Site No. 1-30-040, GTE Operations Support Incorporated. ESC Engineering of New York, P.C., 2004, Groundwater Interim Remedial Measure, Operable Unit No. 2, Full-Scale System Completion Report, Groundwater Circulation Well System, Former General Instrument Corporation Site, Hicksville, New York, Dated October 2004. Fred C. Hart Associates, Inc. (FCHA), 1985, Letter Report on the Cleanup of the Wastewater Lagoon, General Instrument Corporation Site, Hicksville, New York, Dated July 1985. Henningson, Durham, and Richardson Architecture and Engineering P.C. (HDR), 2010, Pre-Design Investigation Evaluation Report, New Cassel Industrial Area, Offsite Groundwater OU#3, Dated March 2010. , 2011, Draft Pre-Design Investigation Report, New Cassel Industrial Area, Offsite Groundwater OU#3, Dated August 2011.

Lawler, Matusky and Skelly Engineers LLP (LMS), 2000, Remedial Investigation Report, New Cassel

Industrial Area, Off-Site Groundwater, Town of North Hempstead, Nassau County, Dated

September 2000.

- The Louis Berger Group, Inc. (LBGI) and Ecology and Environment, Inc. (EEI), 2011, Final Work Plan Off-Site Groundwater Characterization and Feasibility Study for the Sylvania Corning FUSRAP Site, Hicksville, New York, Dated May 2011.
- Malcolm Pirnie, Inc. (MPI), 2007, Groundwater Investigation Report, Former Sylvania Electric Products Incorporated Facility, Hicksville, New York, Voluntary Cleanup Program Site No. V00089-1, Dated January 2007.
- New York State Department of Environmental Conservation (NYSDEC), 2003, Record of Decision, New Cassel Industrial Area Sites, Town of North Hempstead, Nassau County, New York, Off-Site Groundwater South of the New Cassel Industrial Area, Operable Unit No. 3, Dated October 2003.
- Stearns and Wheler, LLC., 1992, Draft Remedial Investigation, General Instrument Corporation, Hicksville, New York, Dated January 1992.
- _____, 1995. Supplemental Field Work, General Instrument Site, Hicksville, NY, Dated April 1995.
- ______, 1997. Phase III Remedial Investigation, General Instrument Site, Hicksville, NY, Dated September 1997.
- ______, 2002. Soil Boring Results, General Semiconductor Site, Hicksville, NY, Site Code 1-30-020, S&W No. 80147.5, Dated April 2002.
- WSP Engineering of New York, P.C. (WSP), 2008, November 2007 Semiannual Groundwater Monitoring Report, Former General Instrument Corporation Site, Hicksville, New York, Dated March 2008.
- ______, 2010, Operable Unit 1, Summary of SVE System Closure Sampling in Area A, Former General Instrument Corporation Site, Hicksville, New York, Dated August 2010.
- United States Environmental Protection Agency (EPA), 2011, HRS Documentation Record, New Cassel/Hicksville Ground Water Contamination, Dated March 2011.
- United States Geological Survey (USGS), 1972a, Regional Rates of Ground-Water Movement on Long Island, New York, Professional Paper 800-C, pages C271-C277.
- ______, 1972b, Water Transmitting Properties of Aquifers on Long Island, New York, Professional Paper 800-C, pages E1 to E24.
- _______, 1983, Effects of Sanitary Sewers on Ground-Water Levels and Streams in Nassau and Suffolk Counties, New York, Part 1: Geohydrology, Modeling Strategy, and Regional Evaluation, Water Resources Investigations 82-4045.
- URS Corporation (URS) and Envirocon, Inc., 2005a, Systematic Subsurface Soil Sampling and Analysis Report, Investigation Beneath the 100 Building, Former Sylvania Electric Products Incorporated Facility, Hicksville, New York, Dated November 2005.

а	, 2005b, West of the 140 and 100 Buildings and Southwest of the 100 Building (Survey Unit 01 and Survey Unit 02) Report, Former Sylvania Electric Products Incorporated Facility, Hicksville,
ľ	New York, Dated November 2005.
	, 2005c, Investigation Beneath the 140 Building (Survey Unit 06 and Survey Unit 07), Former
S	Sylvania Electric Products Incorporated Facility, Hicksville, New York, Dated November 2005.
	, 2005d, Investigation and Remediation of Soils North of the 140, Former Sylvania Electric
	Products Incorporated Facility, Hicksville, New York, Dated August 2005.
	, 2005e, Cells 3, 4, 12, 14 and Golf Course Driving Range Subsurface Soil Delineation, Former
S	Sylvania Electric Products Incorporated Facility, Hicksville, New York, Dated August 2005.
	, 2005f, Cell 9 Subsurface Soil Delineation, Former Sylvania Electric Products Incorporated
F	Facility, Hicksville, New York, Dated August 2005.

TABLES
New Cassel/Hicksville Ground Water Contamination Site
Nassau County, New York
July 2013

Well No.	Northing	Easting	TOC or GS Elev.	SS Elev. Screen/Sample Interval	mple Interval	Status	Comments
wen No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
New Cassel Ind	ustrial Area	OU-3					
EW-1B	214139.02	1106606.83	113.84	154	164	Active	
EW-1C	214133.38	1106591.29	113.99	506	516	Active	
EW-2B	214176.02	1105922.15	114.88	132	142	Active	
EW-2C	214169.96	1105910.27	114.80	504	514	Active	
EX-1	213894.38	1107322.85	107.71	185	205	Active	Groundwater extraction well.
EX-2	212587.22	1103835.27	105.47	265	285	Active	Groundwater extraction well.
FSMW-6A	214930.39	1107494.93	NA	70	80	Active	
FSMW-6B	214928.38	1107488.06	NA	149	159	Active	
FSMW-7A	214823.99	1107063.34	122.70	69	79	Active	
FSMW-7B	214816.77	1107063.15	121.27	148	158	Active	
FSMW-13A	214665.46	1107432.23	117.74	69	79	Active	
FSMW-13B	214659.28	1107433.80	117.77	119	129	Active	
FSMW-13C	214651.61	1107436.15	117.66	239	249	Active	
FSMW-14A	214580.13	1107262.83	116.99	119	129	Active	
FSMW-14B	214582.56	1107256.69	117.18	159	169	Active	
FSMW-14C	214584.35	1107249.01	116.97	239	249	Active	
GWHP-1	214657.78	1107129.44	NA	60	150	Inactive	Sampled at generally 10-foot intervals from HydroPunch boring.
GWHP-2	211592.49	1106085.25	NA	58	150	Inactive	Sampled at generally 10-foot intervals from HydroPunch boring.
GWHP-3	214136.05	1104185.50	NA	58	150	Inactive	Sampled at generally 10-foot intervals from HydroPunch boring.
GWHP-4	216555.29	1106236.13	NA	58	150	Inactive	Sampled at generally 10-foot intervals from HydroPunch boring.
MW-1	213450.19	1105300.86	113.67	90	110	Active	
MW-2	213453.60	1105304.62	113.69	110	130	Active	
MW-3	213456.32	1105307.42	113.67	130	150	Active	
MW-4	213460.96	1105312.86	113.76	180	200	Active	
MW-5	213806.40	1105650.97	115.64	90	110	Active	
MW-6	213802.99	1105653.58	115.70	110	130	Active	
MW-7	211946.79	1104331.50	105.92	90	110	Active	
MW-8	211947.25	1104337.36	105.85	120	140	Active	
MW-9	212954.47	1105703.40	109.94	310	315	Active	

Well Me	Northing	Easting	TOC or GS Elev.	Screen/Sar	mple Interval	C404	Community
Well No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
MW-10	213449.23	1105233.35	113.05	275	285	Active	
MW-11S	212056.64	1104018.49	106.96	215	225	Active	
MW-11D	212056.64	1104018.49	106.96	275	285	Active	
MW-12	212461.12	1103100.39	104.70	215	225	Active	
MW-13	211667.02	1103498.73	105.26	200	210	Active	
MW-14	214120.66	1107347.51	111.85	185	205	Active	
MW-15	213749.98	1106780.90	111.03	185	205	Active	
MW-16S	213313.45	1106226.97	109.04	215	225	Active	
MW-16D	213313.45	1106226.97	109.07	275	285	Active	
MW-17S	213282.84	1107304.77	113.90	215	225	Active	
MW-17D	213282.84	1107304.77	113.87	275	285	Active	
NRMW-1	211513.00	1106072.00	107.01	60	70	Active	
NRMW-2	213343.00	1105420.00	112.70	60	70	Active	
NRMW-3	213033.00	1105923.00	108.24	60	70	Active	
NRMW-4	213356.00	1104001.00	110.03	60	70	Active	
TMW-1	212023.94	1103888.96	NA	72	285	Inactive	Sampled at generally 10- to 20-foot intervals from temporary monitor wells.
TMW-2	212826.11	1103638.25	NA	65	285	Inactive	Sampled at generally 20-foot intervals from temporary monitor wells.
TMW-3D	212720.39	1104659.48	NA	52	502	Inactive	Sampled at generally 20-foot intervals from temporary monitor wells.
TMW-4	212458.05	1105294.74	NA	65	285	Inactive	Sampled at 20-foot intervals from temporary monitor wells.
TMW-5	213463.41	1105545.03	NA	65	285	Inactive	Sampled at 20-foot intervals from temporary monitor wells.
TMW-6	214301.81	1106269.29	NA	63	283	Inactive	Sampled at 20-foot intervals from temporary monitor wells.
TMW-7	214207.61	1107381.31	NA	65	285	Inactive	Sampled at 20-foot intervals from temporary monitor wells.
TMW-8D	213297.60	1106240.24	NA	52	502	Inactive	Sampled at generally 20-foot intervals from temporary monitor wells.
TMW-9	213417.25	1104512.43	NA	60	280	Inactive	Sampled at 20-foot intervals from temporary monitor wells.
GTEOSI							
MW-1	219282.26	1109064.47	142.68	58	78	Inactive	Decommissioned in 2003.
MW-2	219286.98	1109131.42	142.36	58	78	Inactive	Decommissioned in 2003.
MW-3	219002.76	1108996.06	141.12	58	78	Active	
MW-4	219031.11	1109103.06	140.73	58	78	Active	
MW-5	219246.85	1109234.58	142.29	58	78	Inactive	Decommissioned in 2003.

Well No.	Northing	Easting	TOC or GS Elev.	Screen/Sar	nple Interval	Chadaaa	Community
weii No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
MW-6	219238.97	1109255.77	142.45	58	78	Inactive	Decommissioned in 2003.
MW-7	219468.63	1109357.78	143.09	58	78	Inactive	Decommissioned in 2003.
MW-8	219009.41	1109060.39	140.91	120	130	Active	
MW-9	219036.42	1109195.54	141.58	72	82	Active	
MW-10	219039.36	1109218.76	141.47	120	130	Active	
MW-11	219079.07	1109296.90	141.77	71	81	Active	
MW-12	219057.73	1109301.31	142.28	120	130	Active	
MW-55I	219559.76	1109452.50	136.65	85	95	Active	
MW-P110-355	213717.02	1109434.84	118.71	345	355	Active	
MW-P110-440	213702.57	1109439.01	118.91	430	440	Active	
MW-P114-170	213920.33	1110463.49	120.02	160	170	Active	
MW-P114-290	213904.34	1110454.96	119.90	280	290	Active	
W-24	NA	NA	146.60	67	87	Inactive	Located to north in Nassau County Department of Public Works yard.
W-24D	NA	NA	145.45	109	129	Inactive	Located to north in Nassau County Department of Public Works yard.
W-25	NA	NA	145.97	64	84	Inactive	Located to north in Nassau County Department of Public Works yard.
Former Sylvani	a						
MW-13S	219755.81	1108764.46	145.3	70	80	Active	On NCDPW site to north
MW-13D	219754.58	1108775.11	145.42	290	300	Active	On NCDPW site to north
MW-14S	219812.98	1109078.70	144.39	70	80	Active	On NCDPW site to north
MW-14D	219828.19	1109083.22	144.29	294	304	Active	On NCDPW site to north
MW-14DD	219846.10	1109088.99	144.04	365	375	Active	On NCDPW site to north
MW-15S	219751.76	1109340.84	144.18	70	80	Active	On NCDPW site to north
MW-15D	219760.98	1109357.20	144.14	300	310	Active	On NCDPW site to north
MW-15DD	219742.81	1109354.66	144.24	360	370	Active	On NCDPW site to north
MW-16S	220169.77	1109630.96	145.52	70	80	Active	
MW-16D	220170.22	1109648.11	144.72	280	290	Active	
MW-17S	219668.79	1108969.28	144.48	65	75	Active	
MW-18S	219623.98	1109344.50	144.01	62	72	Active	
MW-18I	219610.04	1109338.61	144.16	118	128	Active	
MW-19S	219606.67	1108964.58	143.27	70	80	Active	

Well No.	Northing	g Easting TOC or G		v. Screen/Sample Interval		Status	Comments
wen No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
MW-19D	219606.48	1108952.25	143.18	296	306	Active	
MW-20S	219567.86	1109323.36	143.89	70	80	Active	
MW-20I	219552.35	1109310.52	144.13	140	150	Active	
MW-20D	219561.48	1109312.83	144.01	300	310	Active	
MW-21D	219484.07	1108737.14	143.16	300	310	Active	
MW-21I	219472.33	1108737.14	143.16	170	180	Active	
MW-22S	219412.43	1109340.10	144.21	70	80	Active	
MW-22I	219399.95	1109338.68	144.29	140	150	Active	
MW-22D	219392.39	1109334.39	144.17	305	315	Active	
MW-23S	219265.09	1108968.58	141.94	90	100	Active	
MW-23I	219256.48	1108976.54	141.75	170	180	Active	
MW-23D	219265.64	1108976.29	141.66	330	340	Active	
MW-24S	219336.90	1109094.78	142.43	70	80	Active	
MW-24DD	219337.08	1109085.13	145.66	360	370	Active	
MW-25S	219236.75	1108768.63	142.15	105	115	Active	
MW-25I	219219.53	1108770.39	142.00	230	240	Active	
MW-25D	219227.63	1108769.75	142.16	340	350	Active	
MW-26I	219265.30	1108864.44	142.40	110	120	Active	
MW-26D	219260.25	1108868.37	142.10	266	276	Active	
MW-27S	219236.67	1109092.07	141.66	80	90	Active	
MW-27I	219240.51	1109097.44	141.53	280	290	Active	
MW-27D	219240.51	1109097.44	141.64	365	375	Active	
MW-28S	219267.08	1109279.72	144.59	90	100	Active	On GCDR to east
MW-28I	219263.60	1109270.16	147.25	149	159	Active	On GCDR to east
MW-28D	219275.31	1109273.99	147.30	277	287	Active	On GCDR to east
MW-30S	218953.99	1108771.74	140.91	90	100	Active	
MW-30I	218958.16	1108787.67	140.92	230	240	Active	
MW-30D	218955.84	1108779.60	140.96	330	340	Active	
MW-31I	218998.56	1109004.30	140.99	180	190	Active	
MW-31D	218996.58	1108997.26	140.91	320	330	Active	

Well No.	Northing	Easting	TOC or GS Elev.	Screen/Sar	mple Interval	Status	Comments
wen No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
MW-32D	219079.80	1109291.05	141.24	295	305	Active	
MW-33S	219259.46	1109471.56	135.84	65	75	Active	On GCDR to east
MW-33D	219265.89	1109481.07	135.56	290	300	Active	On GCDR to east
MW-34S	219165.60	1109692.72	136.76	65	75	Active	On GCDR to east
MW-34D	219167.75	1109702.65	136.59	270	280	Active	On GCDR to east
MW-39S	218962.25	1108815.90	141.05	76	86	Active	
MW-41S	219576.13	1109279.36	143.62	66	76	Active	
MW-42I	219570.81	1109383.96	143.80	140	150	Active	
MW-43S	219515.52	1109327.65	144.03	65	75	Active	
MW-44S	219302.78	1108970.41	142.85	65	75	Active	
MW-49S	219338.60	1108812.55	143.98	100	110	Active	
MW-50I	219197.64	1108903.78	141.71	120	130	Active	
MW-51I	219015.32	1109094.89	140.52	130	140	Active	
MW-52D	219148.36	1109567.12	137.07	275	285	Active	On GCDR to east
MW-53S	219129.66	1109462.22	137.21	70	80	Active	On GCDR to east
MW-55S	219559.76	1109452.50	136.50	85.5	95.5	Active	On GCDR to east
General Instru	nent						
S-1-325	213800.45	1109869.93	119.98	285	325	Active	
S-1-450	213800.77	1109870.04	119.93	410	450	Active	
				210	240		
UVB-1	216450.07	1108886.67	NA	285	315	Inactive	Groundwater recirculation well.
				360	380		
				210	240		
UVB-2	2160005.73	1108640.70	NA	285	315	Inactive	Groundwater recirculation well.
				360	380		
				210	240		
UVB-3	216555.76	1109202.26	NA	285	315	Inactive	Groundwater recirculation well.
				360	380		
W-1-75	218830.11	1109106.86	139.80	65	75	Active	
W-1-120	218839.34	1109099.30	139.33	110	120	Active	
W-2-70	218772.64	1109070.18	139.25	60	70	Active	

Well No.	Northing	thing Easting TOC or C		v. Screen/Sample Interval		C4 ~ 4	Comments
wen No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
W-2-120	218758.00	1109089.00	NA	110	120	Inactive	Abandoned
W-3-72	218985.21	1109072.29	140.88	62	72	Active	
W-3-112	218992.41	1109071.12	140.71	102	112	Active	
W-5-78	218404.23	1108995.96		68	78	Active	
W-6-79	218428.26	1109179.60	140.39	69	79	Active	
W-8-71	219039.93	1109322.09	141.25	61	71	Active	
W-9-71	218805.00	1109033.00	139.32	61	71	Inactive	Damaged or destroyed.
W-10-70	218492.38	1109241.73	139.13	60	70	Inactive	Damaged or destroyed.
W-10-71	218388.54	1108813.29	139.27	61	71	Active	
W-10-120	218376.12	1108814.76	138.52	110	120	Active	
W-11-70	218490.00	1109245.00	139.10	60	70	Active	
W-12-70	218463.84	1109389.05	138.56	60	70	Active	
W-12-120	218463.12	1109381.53	138.28	110	120	Active	
W-13-63			NA	53	63	Inactive	Damaged or destroyed.
W-14-150	218837.64	1109108.59	139.65	140	150	Active	
W-15-168	218200.94	1108867.25	134.37	158	168	Active	
W-16-148	218248.07	1109205.06	139.55	138	148	Active	
W-17-130	218257.00	1109313.00	NA	120	130	Inactive	
W-18-150	217372.48	1109179.95	135.87	140	150	Active	
W-19-110	217398.97	1109278.95	133.98	100	110	Active	
W-19-150	217398.93	1109278.77	134.09	140	150	Active	
W-20-120	217306.05	1109013.64	134.27	100	110	Active	
W-20-160	217306.17	1109014.01	134.42	150	160	Active	
W-21-150	217193.59	1108680.33	NA	140	150	Inactive	Damaged or destroyed.
W-21-180	217193.59	1108680.33	NA	170	180	Inactive	Damaged or destroyed.
W-22-95	218441.85	1109091.54	139.46	85	95	Active	
W-23-110	217819.01	1108789.41	134.21	100	110	Active	
W-24-260	217532.01	1108435.95	133.11	250	260	Active	
W-25-150	217162.46	1108555.28	131.15	140	150	Active	
W-25-188	217162.72	1108554.98	131.34	178	188	Active	

TABLE 1

Well Construction Details New Cassel/Hicksville Ground Water Contamination Site Nassau County, NY October 2012

Well No.	Northing	Easting	TOC or GS Elev.	Screen/Sample Interval		Status	Comments		
wen No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments		
W-26-270	216618.46	1109374.25	119.91	260	270	Active			
W-27-240	216474.81	1108928.53	124.46	210	240	Active			
W-27-285	216475.64	1108932.98	123.64	275	285	Active			
W-28-262	216375.00	1108687.00	NA	252	262	Inactive	Abandoned.		
W-30-285	216536.61	1109150.83	122.99	275	285	Active			
W-31-95	218256.87	1109258.27	138.94	85	95	Active			
W-32-110	218699.33	1108849.47	139.37	100	110	Active			
W-34-285	217344.71	1109122.27	134.56	275	285	Active			
W-35-240	216329.00	1108921.00	123.30	230	240	Inactive	Abandoned		
W-35-315	216329.00	1108921.00	123.52	305	315	Inactive	Abandoned		
W-35-380	216329.00	1108921.00	123.68	370	380	Inactive	Abandoned		
W-36-390	213889.49	1108271.23	117.65	350	390	Active			
W-36-448	213889.45	1108271.54	117.65	418	448	Active			
W-37-325	215594.50	1107539.94	124.00	285	325	Active			
W-37-385	215594.31	1107539.90	124.01	355	385	Active			
Anchor Chemic	al								
PW-02	218052.98	1109640.14	134.45	71	162	Active	CMT multilevel well with seven 2-foot sampling ports.		
PW-03	218036.53	1109746.24	134.18	70	163	Active	CMT multilevel well with seven 2-foot sampling ports.		
PW-04	218107.17	1109958.49	130.72	71	163	Active	CMT multilevel well with seven 2-foot sampling ports.		
PW-05	217670.32	1109481.43	132.43	68.5	221	Active	CMT multilevel well with seven 2-foot sampling ports.		
PW-06	217610.45	1109694.83	132.10	70	222	Active	CMT multilevel well with seven 2-foot sampling ports.		
PW-07	217856.59	1109922.09	129.11	70	221	Active	CMT multilevel well with seven 2-foot sampling ports.		
123 Post Avenu	e								
OU2-1	213738.02	1098158.37	NA	35	50	Active			
OU2-2	213545.44	1098122.97	NA	56	66	Active			
OU2-3	212716.62	1097779.57	NA	90	100	Active			
OU2-4	212208.83	1097657.79	NA	104	114	Active			
OU2-5	212037.49	1097837.63	NA	111	121	Active			
OU2-6	212753.53	1097853.65	NA	105	115	Active			
OU2-7A	212675.49	1097750.64	NA	90	100	Active			
OU2-7B	212675.49	1097750.64	NA	110	120	Active			

TABLE 1

Well Construction Details New Cassel/Hicksville Ground Water Contamination Site Nassau County, NY October 2012

Well No.	Northing	Easting	TOC or GS Elev.	Screen/Sample Interval		Status	Community
	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)	Status	Comments
OU2-7C	212675.49	1097750.64	NA	140	150	Active	
OU2-8A	212538.15	1097747.52	NA	90	100	Active	
OU2-8B	212538.15	1097747.52	NA	115	125	Active	
OU2-8C	212538.15	1097747.52	NA	140	150	Active	
OU2-9A	212541.27	1097816.19	NA	90	100	Active	
OU2-9B	212541.27	1097816.19	NA	115	125	Active	
OU2-9C	212541.27	1097816.19	NA	140	150	Active	
OU2-10A	212550.63	1097881.74	NA	90	100	Active	
OU2-10B	212550.63	1097881.74	NA	115	125	Active	
OU2-10C	212550.63	1097881.74	NA	140	150	Active	
OU2-11	212257.22	1097753.76	NA	190	200	Active	
IW-1	212733.53	1097719.57	NA	90	95	Active	Oxidation injection well.
IW-3	212753.53	1097809.57	NA	90	95	Active	Oxidation injection well.
IW-4	212753.53	1097913.65	NA	90	95	Active	Oxidation injection well.

TOC = top of casing

GS = ground surface

ft-amsl = feet above mean sea level

ft-bgs = feet below ground surface

Vertical datum = NAVD 88

Coordinate system = NAD83 New York State Plane, Long Island Zone

NA - not available

Coordinates for the 123 Post Avenue site wells were estimated using Geographic Information System software.

TABLE 2
Groundwater Elevation Data
New Cassel/Hicksville Ground Water Contamination Site
Nassau County, NY
October 2012

Well No	Date	e Top of Casing Elev.		Interval	Depth to Groundwater	Groundwater Elevation (ft-amsl)				
Well No.		(ft-amsl)	(ft-bgs)		(ft-btoc)					
New Cassel Industrial Area Site										
MW-9	12/3/2009	109.94	310	315	41.55	68.39				
FSMW-14C	12/3/2009	116.97	239	249	45.76	71.21				
General Insti	General Instrument Site									
S-1-325	11/30/2009	119.90	285	325	49.65	70.25				
W-24-260	11/30/2009	133.04	250	260	57.24	75.80				
W-26-270	11/30/2009	119.84	260	270	44.96	74.88				
W-27-285	11/30/2009	123.58	275	285	49.11	74.47				
W-30-285	11/30/2009	122.93	275	285	48.03	74.90				
W-34-285	11/30/2009	134.54	275	285	59.01	75.53				
W-36-390	11/30/2009	117.59	350	390	47.63	69.96				
W-37-325	11/30/2009	123.94	285	325	50.96	72.98				

ft-amsl = feet above mean sea level ft-bgs = feet below ground surface ft-btoc = feet below top of casing

TABLE 3

Upgradient Well Construction Details New Cassel Industrial Area OU-3 Nassau County, NY October 2012

Well No.	Northing	Easting	TOC or GS Elev.	Screen/Sa	Status		
wen No.	(feet)	(feet)	(ft-amsl)	Top (ft-bgs)	Bottom (ft-bgs)		
N-5007	218110.92	1102868.06	NA	209	259	Unknown	
N-5655	217014.85	1106336.38	NA	205	255	Unknown	
N-6819	216609.87	1106338.47	NA	215	265	Unknown	
N-7353	218105.87	1103151.45	NA	300	390	Unknown	
N-9354	216780.13	1099719.38	NA	89	94	Unknown	
N-10459	217192.00	1106450.00	NA	68	78	Unknown	
N-10460	217395.00	1107526.00	NA	68	78	Unknown	
N-10461	216303.74	1105801.23	NA	66	76	Unknown	
N-10462	216381.00	1104914.00	NA	64	74	Unknown	

TOC = top of casing

GS = ground surface

ft-amsl = feet above mean sea level

ft-bgs = feet below ground surface

Vertical datum = NAVD 88

Coordinate system = NAD83 New York State Plane, Long Island Zone

NA - not available

Well information from USGS Nassau County Database

FIGURES
New Cassel/Hicksville Ground Water Contamination Site
Nassau County, New York
July 2013

Map Creation Date: 29 December 2011

Coordinate System: New York State Plane Long Island

FIPS: 3104
Datum: NAD83
Units: Feet

NCHGW Superfund Site 100 ug/L isoconcentration Contours for Tetrachloroethylene (PCE)

U.S EPA Environmental Response Team Scientific Engineering Response and Analytical Services EP-W-09-031 W.A.# 0-144 Figure , N7<; K 'Gi dYfZi bX'G]hY 100 ug/L isoconcentratiob Contours for Tetrachloroethylene (PCE) Nassau County, New York

NCHGW Superfund Site

100 ug/L isoconcentration Contours

for Trichloroethylene (TCE)

Map Creation Date: 29 December 2011

FIPS: 3104

Datum: NAD83 Units: Feet

Coordinate System: New York State Plane Long Island

U.S EPA Environmental Response Team Scientific Engineering Response and Analytical Services EP-W-09-031 W.A.# 0-144 Figure -N7<; K 'Gi dYfZ bX'G]hY 100 ug/L isoconcentration Contours for Trichloroethylene (TCE) Nassau County, New York

Coordinate system: New York State Plane Long Island FIPS: 3104
Datum: NAD83
Units: Feet

200 200 Feet

Scientific Engineering Response and Analytical Services

EP-W-09-031

MAN OF A STATE

Figure 19

Molar Fractions of Total Ethenes
123 Post Avenue W.A.# 0-144

Nassau County, New York

APPENDIX A
New Cassel/Hicksville Ground Water Contamination Site
Nassau County, New York
July 2013

- USACE WELL LOCATION
 GI WELL LOCATION
- NYSDEC WELL LOCATION
- GTEOSI WELL LOCATION

NOTES

- 1. AERIAL IMAGE FROM NYS GIS CLEARINGHOUSE HIGH RESOLUTION DIGITAL ORTHOIMAGERY (6-INCH RESOLUTION - 2007).
- 2. SOURCE: MPI 2011

U.S. EPA Environmental Response Team Scientific Engineering Response and Analytical Services EP-W-09-031 W.A.# 0 -144

Figure A-24 On-Site and Off-Site Monitoring Well Location Map Former Sylvania Site **NCHGW Superfund Site** Nassau County, NY

0-144/144_New_Cassel_FigA-24.dwg

- GTEOSI PROFILE LOCATION GI PROFILE LOCATION
- NYSDEC CANTIAGUE ROCK ROAD INVESTIGATION PROFILE LOCATION

NOTES

- AERIAL IMAGE FROM NYS GIS CLEARINGHOUSE HIGH RESOLUTION DIGITAL ORTHOIMAGERY (6-INCH RESOLUTION 2007).
- 2. SOURCE: MPI 2011

U.S. EPA Environmental Response Team Scientific Engineering Response and Analytical Services

EP-W-09-031

W.A.# 0 -144

Figure A-25 Waterloo Profiler Locations Former Sylvania Site **NCHGW Superfund Site** Nassau County, NY

- SOIL SAMPLING LOCATION SAMPLE LOCATION WITH THORIUM 232 EXCEEDING THE SITE SOIL STANDARD OF 3.4 PCI/G, WHICH IS REPRESENTATIVE OF 2.8 PCI/G ABOVE SITE BACKGROUND (0.6 PCI/G).

NOTES

- AERIAL IMAGE FROM NYS GIS CLEARINGHOUSE HIGH RESOLUTION
- DIGITAL ORTHOMAGERY (6-INCH RESOLUTION 2007).
 RESULTS DO NOT INCLUDE SAMPLE LOCATIONS FROM AREAS THAT HAVE BEEN REMEDIATED.

SOURCE: MPI, 2011

U.S. EPA Environmental Response Team Scientific Engineering Response and Analytical Services EP-W-09-031 W.A.# 0 -144

Figure A-32 On-Site Thorium Exceeding 3.4 PCI/G Sylvania Corning FUSRAP Site NCHGW Superfund Site Nassau County, New York

DWGNAME

PLT_DATE

- ♦ USACE WELL LOCATION
- . GI WELL LOCATION
- NYSDEC WELL LOCATION
- GTEOSI WELL LOCATION

NOTES

 AERIAL IMAGE FROM NYS GIS CLEARINGHOUSE HIGH RESOLUTION DIGITAL ORTHOIMAGERY (6-INCH RESOLUTION - 2007).

MODIFIED FROM: MPI, 2011

Due to space limitations this diagram includes groundwater sample results from all wells south of West John Street and all Profiles south of the railroad tracks on the southern border of King Kullea.

Profile pie diagrams were constructed by averaging the molar fraction of each compound over the portion of the Profile that contained groundwater with similar characteristics as indicated.

U.S. EPA Environmental Response Team Scientific Engineering Response and Analytical Services EP-W-09-031 W.A. # 0-144

Figure A-33
Molar Fractions of VOCs in Groundwater
Collected from Monitoring Wells and
Selected Profile Borings
NCHGW Superfund Site
Nassau County, New York

APPENDIX B
New Cassel/Hicksville Ground Water Contamination Site
Nassau County, New York
July 2013

1,2-DICHLOROBENZENE PLUME BOUND AT 25 ug/L (DASHED WHERE INFERRED)

NOTES

- 1. MAXIMUM 1,2-DICHLOROBENZENE CONCENTRATIONS DETECTED AT EACH LOCATION ARE PRESENTED.
- 2. GTEOSI PROFILES, GI PROFILES, AND THE HIGHEST HISTORIC SAMPLING RESULTS FROM GI WELLS WERE CONSIDERED IN PREPARATION OF THIS FIGURE.
- AERIAL IMAGE FROM NYS GIS CLEARINGHOUSE HIGH RESOLUTION DIGITAL ORTHOIMAGERY (6-INCH RESOLUTION - 2007).

4. SOURCE: MPI, 2011

U.S. EPA Environmental Response Team
Scientific Engineering Response and Analytical Services

Figure B-5
Distribution of 1,2-Dichlorobenzene
in Groundwater
NCHGW Superfund Site

NCHGW Superfund Site Nassau County, NY

SCALE IN FEET

W.A.# 0 -144 Nassau

EP-W-09-031

0-144/144_New Cassel_FlgB-5.dwg

CROSS-SECTION LOCATION MAP

NOTES

- 1. AERIAL IMAGE FROM NYS GIS CLEARINGHOUSE HIGH RESOLUTION DIGITAL ORTHOIMAGERY (6-INCH RESOLUTION - 2007).
- 2. SOURCE: MPI, 2011

U.S. EPA Environmental Response Team Scientific Engineering Response and Analytical Services EP-W-09-031 W.A.# 0 -144

Figure B-6 Side View and Cross-Section Distribution of Tetrachloroethene Using Profile Data **NCHGW Superfund Site** Nassau County, NY

0-144/144_New Cassel_FlgB-6.dwg

01/03/12

APPENDIX C New Cassel/Hicksville Ground Water Contamination Site Nassau County, New York July 2013

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA

EXISTING MONITORING WELL SAMPLING

TCL VOLATILE ORGANIC COMPOUNDS

Sample ID Sample Depth, ft Date of Collection	MVV-1 90-110 2/25/2008	MW-2 110-130 2/25/2008	MW-3 130-150 2/25/2008	MW-4 180-200 2/25/2008	MW-5 90-110 2/26/2008	MVV-6 110-130 2/26/2008	MW-7 90-110 2/26/2008	MW-8 120-140 2/26/2008	MW-9 310-315 2/28/2008	EW-1B 154-164 2/27/2008	EW-2B 132-142 2/27/2008	EW-1C 506-516 2/27/2008	EW-2C 504-514 2/27/2008	Contract Required Detection Limit	NYSDEC TOGS 1.1.1 CLASS GA GROUNDWATER STANDARDS/
Dilution Factor	1/10	1/5	1/25	1/50	1.0	1/80	1.0	1.0	1/2	1/8	1/4	1/2	1.0		GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Dichlorodifluoromethane	U	U	U	. U	U	υ	U	U	Ū	U	U	U	U	0,5	5 ST
Chioromethane	U	U	U	U	U	U	U	U	U	U	u	U	U	0.5	5 ST
Vinyi Chloride	U	U	U	U	U	0.94	U	U	υ	u	11	U	U	0.5	2 ST
Bromomethane	U	U	U	υ	U	U	· U	U	U	U	U	u	U	0.5	5 ST
Chloroethane	U	U	U	U	U	9.8	U	υ	υ	U	U	U	U	0.5	5 ST
Trichlorofluoromethane	U	υ	U	U	υ	U	υ	U	U	U	U	u u	Ü	0.5	5 ST
1,1-Dichloroethene	23 D	62 D	180 D	810 D	2.2	840 D	U.	0.77	6.9	4.2	2.6	0.34 J	u	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	U	1.3	1.8	18	U	2.3	U	U	U	7.L.	20 -	0.54	1	0.5	5 ST
Acetone	u	U	U	U	u	u	U	U	U	ŭ			U	0.5	5 ST
Carbon Disulfide	U	U	U	U	U	u	U	U	· u	U	U	U	U	5	50 GV
Methyl Acetate	Ü	U	υ	u	U	u	U	U	U	U	U	U	u	0.5	60 GV
Methylene Chloride	U	U	0.22 J	2	U	u	U	. U	Ü	U	U	Ü	U	0.5	
trans-1,2-Dichloroethene	U	U	U	u	U	210 E	U	U	U	U			U	0.5	5 ST
Methyl tert-butyl Ether	, U	0.38 J	0.24 J	U	- u	5.8	0.35 J	0.51	0.32 J	4.1	U	U	U	0.5	5 ST
1,1-Dichloroethane	22 D	28 D	67 D	160 D	1.1	970 D	0.33 J	1.4	2.6	0.79		U	U	0.5	10 GV
cis-1,2-Dichioroethene	3.3	6.1	13	31 D	 U	5.2	4.5	1.4			1.6	0.47 J	. υ	0.5	5 ST
2-Butanone	U	U	U	U	U	Ü		•	3.6	7.4	6.5	1,1	U	0.5	5 ST
Bromochloromethane	U	U	u u	u	. U	i i	U	U	U	U	υ	U	U	5	50 GV
Chloroform	0.47 J	0.78	1.4	1.6	u	1.2	U	U 0.25 J	U	U	U	U	U	0.5	5 ST
1,1,1-Trichloroethane	20 D	22 D	60 D	250 D	3.9	1400 D	U		0.55	U	U	0.39 J	U	0.5	7 ST
Cyclohexane	Ú	U	Ü	U U	U.5	1400 D		0.41 J	3.8	2.8	1.1	0.25 J	u	0.5	5 ST
Carbon Tetrachloride	U	U	Ü	U	U	. υ	U	U	U	U	U	U	U	0.5	
Benzene	U	U	اں	Ü	U	u	U	U	U	,U	U	0.89	U	0.5	5 ST
1,2-Dichloroethane	u	u	u	4.5	u	Ü	' 11	U	u	U	U	U	υ	0.5	1 ST
Trichioroethene	17	70 D	310 D	.910 D	0.32 J	59 D		U	U	U	U	U	U	0.5	0.6 ST
Methylcyclohexane	U	Ú	U	U U	1		0.78	1.6	19 D	17	42 D	20 D	0.5 J	0.5	5 ST
1,2-Dichloropropane	U	υ	U	U	U	U	υ	U	U	.U	U	U	U	0.5	-
Bromodichloromethane	u	u	u	U	U	U	U	U	U	U	U	υ	U	0.5	1 ST
cis-1,3-Dichloropropene	U	U	U	U	U	U	ប	U	U	υ	U	U	U	0.5	50 GV
4-Methyl-2-Pentanone	U	u	U	U	U	υ 	U	U	U	u	υ	U	υ	0.5	0.4 ST*
Toluene	U	U	U	U	u	U	U	U	υ	U	Ü	U	U	5	- !
trans-1,3-Dichloropropene	u	u	, ,	Ü	U	U	U	U	U	U	. U	U	U	0.5	5 ST
1,1,2-Trichloroethane	u	u	1	2	U	U	U	U	U	U	U	U	U	0.5	0.4 ST*
Tetrachloroethene	91 D	31 D	37 D	140 D	1		U	U	u	U	U	U	U	0.5	1 ST
2-Hexanone	u	U U			0,0 0	18	1.7	1.1	4.7	74 D	11	0.96	U	0.5	5 ST
Dibromochloromethane	Ü	U	U	U	U	U	U	U	U	U	U	. υ	U	5	50 GV
1,2-Dibromoethane	U	u	U	U	٠. ١	U	U	U	U	U	. U	U	υ	0.5	50 GV
Chlorobenzene	u	U	U	U	U 	U	U	. U	U	U	U	U	U	0.5	0.006 ST
Ethylbenzene	U	U	u	U	U	Ü	U	U	υ	U	0.42 J	U	U	0.5	5 ST
		<u> </u>		U	U	Ų	U	U	U	U	u	u	U	0.5	5 ST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

EXISTING MONITORING WELL SAMPLING

TCL VOLATILE ORGANIC COMPOUNDS

Sample ID Sample Depth, ft Date of Collection Dilution Factor Units	MW-1 90-110 2/25/2008 1/10 ug/L	MW-2 110-130 2/25/2008 1/5 ug/L	MW-3 130-150 2/25/2008 1/25 ug/L	MW-4 180-200 2/25/2008 1/50 ug/L	MW-5 90-110 2/26/2008 1.0 ug/L	MW-6 110-130 2/26/2008 1/80 ug/L	MW-7 90-110 2/26/2008 1.0 ug/L	MW-8 120-140 2/26/2008 1.0 ug/L	MW-9 310-315 2/28/2008 1/2 ug/L	EW-1B 154-164 2/27/2008 1/8 ug/L	EW-2B 132-142 2/27/2008 1/4 ug/L	EW-1C 506-516 2/27/2008 1/2 ug/L	EW-2C 504-514 2/27/2008 1.0 ug/L	Contract Required Detection Limit	NYSDEC TOGS 1.1.1 CLASS GA GROUNDWATER STANDARDS/ GUIDANCE VALUES ug/L
m/p-Xylenes	0.55 B*	0.27 BJ*	0.34 BJ*	0.41 BJ*	0.42 J	0.29 BJ*	0.25 J	υ	u	· U	U	U	U	0.5	5 ST
o-Xylene	U	υ	u	U	υ	· u	U	. u	U	U	u	U	U	0.5	5 ST
Styrene	U	U	υ	U	υ	Ú	U	U	U	U	U	U	· u	0.5	5 ST
Bromoform	U	U	U	U	U	U	U	U	U	υ	υ	υ	U	0.5	50 GV
Isopropyibenzene	U	U	U	υ	υ	U	U	U	U	U	u	U	U	0.5	5 \$T
1,1,2,2-Tetrachioroethane	U	u	U	U	υ	υ	U	υ	u	U	U	u	U	0.5	5 ST
1,3-Dichlorobenzene	U	U	U	0.38 J	U	U	υ	U	U	U	U	U	U	0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	0.41 J	U	U	U	U	U	υ	U	U	U	0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	0.23 J	U	υ	U	Ų	U	υ	υ	U	U	0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	υ	U	U	U	U	U	U	U	u	υ	U	U	0.5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	u.	U	U	U	U	U	υ	U	U	U	0.5	· 5ST
Total Targeted VOCs	177	222	672	2,331	8	3,523	8	7	41	110	96	25	1		_
Total TICs	0 J	.0 1	0 1	0 J	0 1	0 1	0 1	0 1	0	0	0 J	0	0		-
Total VOCs	177	222	672	2,331	8	3,523	8	7	41	110	96	25	1		

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly biased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- -: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers
- GV: Guidance Value

: Result exceeds TOGS 1.1.1 class GA Groundwater Standard or Guldance Value

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

EXISTING MONITORING WELL SAMPLING

DESIGN PARAMETERS

Sample ID Sample Depth, ft Date of Collection	MVV-1 90-110 2/25/2008	MVV-2 110-130 2/25/2008	MVV-3 130-150 2/25/2008	MW-4 180-200 2/25/2008	MW-5 90-110 2/26/2008	MW-6 110-130 2/26/2008	MW-7 90-110 2/26/2008	MW-8 120-140 2/26/2008	MW-9 310-315 2/28/2008	EW-18 154-164 2/27/2008	EW-2B 132-142 2/27/2008	EW-1C 508-516 2/27/2008	EW-2C 504-514 2/27/2008	Contract Required Detection Limit	NYSDEC TOGS 1.1.1 CLASS GA GROUNDWATER STANDARDS/ GUIDANCE VALUES
Chioride, mg/L	53	58	43	51	420	250	25	20	21.	28	28	15	13	4.0	250 ST
Nitrogen, Nitrate (as N), mg/L	3.3	3.9 D	3.1	7	3.5	8.2	3.9	5.6	3.1	6.2	2.6	8	4.8 D	0.13	10 ST
Sulfate, mg/L	31	22	20	10	22	32	17	22	14	16	10	U	5.7	5	250 ST
Alkalinity, Total (as CaCQ), mg/L	U	29	Ü	24	U	υ	U	Ü	U	U	υ	21	U	. 20	-
Ferrous Iron, mg/L	U	U	U	U	U	υ	U	υ	υ	U	U	U	U	1	0.3 ST
Carbon Dioxide, Free, mg/L	130	120	310	100	110	82	90	110	120	72	85	38	24	10	-
Total Organic Carbon, mg/L	U	Ü	U	U	υ	U	U	υ	U	U	υ	U	υ	10	- '
Methane, ug/L	U	υ	63	υ	U	U	U	U	υ	U	28	υ	U	14	-
Calcium, ug/L	12,200	13,700	8,930	10,700	38,200	37,700	9,240	10,600	6,960	6,570	6,720	10,300	7,870	5,000	- '
Magnesium, ug/L	4,060	5,160	3,730	3,960	6,130	11,900	3,380	4,560	2,350	2,640	3,010	4,220	3,240	2,000	35,000 GV
Manganese, ug/L	779	334	40.1 B	28.2 B	201	417	9.1 B	82.8	9.5 B	20.2 B	15 B	125	43.4 B	50	500 ST*
Calculated Total Hardness, mg/L	22	27	19	21	41	64	18	23	12	13	15	21	16		_

Qualifiers:

- U: Compound analyzed for but not detected.
- B: Compound detected at a concentraion above IDL but below the CRDL.
- D: Compound analyzed at a secondary dilution.

Notes:

- -: Not established
- ST: Standard
- ST*: Standard applies to the sum of the iron and manganese concentrations.
- GV: Guidance Value

: Result exceeds TOGS 1.1.1 class GA Groundwater Standard or Guidance Value

Total hardness calculated by representing sum total of calcium and magnesium as calcium carbonate,

TABLE A-3

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

COMPOUNDS
٠

														Contract	NYSDEC
										I		r		Required	TOGS 1.1.1
Sample ID	TMW-1	TMW-1		Detection	CLASS GA										
Sample Depth, ft	72	85	115	125	145	165	185	205	225	245	265	285		Limit	GROUNDWATER
Date of Collection	8/29/2008	8/29/2008	8/29/2008	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/27/2008	8/27/2008	8/27/2008	8/26/2008	8/26/2008		Link	STANDARDS/
Dilution Factor	2.5	5	10	40	40	40	10	, 40	40/400	40	1/40	1/40			GUIDANCE VALUES
Units	ug/L	ug/L		ug/L	ug/L										
Dichlorodifluoromethane	U	U	Ü	U	U	U	Ū	U	U	U	U	Ū		0.5	5 ST
Chloromethane	U	U	ט	U	U	U	U	υ	U	υ	U	U		0.5	5 ST
Vinyl Chloride	U	U	Ü	U	U	U	υ	U	U	U	U	U		0.5	2 ST
Bromomethane	U	U	U	U	U	υ	U	U	υ	U	ا ن	U		0.5	5 ST
Chloroethane	U	Ų	υ	U	· U	U	U	υ	U	U U	U	U		0.5	5 ST
Trichiorofluoromethane	u	U	Ü	U	υ	U	υ	υ	U	٠	2,5	66 D	i	0.5	5 ST
1,1-Dichloroethene	U	U	U	U	U	U	υ	υ	44	35	9	35 D	1	0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	υ	Ü	u	U	U	U	U	41	U	0.55	4.7	•	0.5	5 ST
Acetone	U	U	υ	U	U	U	٠ ل	U	U	Ü	U	Ψ./		1	
Carbon Disulfide	Ü	u·	U	U	U	Ū	U	u	Ü	Ü		U		5	50 GV
Methyl Acetate	U	U	U	U	U	U	U	U	U		U	U		0.5 0.5	60 GV
Methylene Chloride	u	υ	U	U	υ	U	U	Ü	Ü	Ü	U	1.2 B		0.5	5 ST
trans-1,2-Dichloroethene	u	U	υ	υ	U	U	U	U	U	Ü	U	1.2 0	1	0.5	5 ST
Methyl tert-butyl Ether	U	U	. U	U	υ	U	υ	U	U	ű	ں ا	U		0.5	10 GV
1,1-Dichloroethane	υ	υ	U	U	υ	U	U	U	U	Ū	4.2	9.5	l.	0.5	5 ST
cis-1,2-Dichloroethene	υ	U	4.6 J	14 J	U	17 J	3.4 J	u	120	100	44 D	85 D	•	i	
2-Butanone	U	U	U	U	u	U	U.	U	U	U	44 D	. 85 D	ţ	0.5	5 ST
Bromochloromethane	U	· U	u	υ	U	Ü	U	U	U	U	u	U		5	50 GV
Chloroform	U	U	Ü	U	v	U	Ü	U	u		3.3	2.3		0.5 0.5	5 ST 7 ST
1,1,1-Trichioroethane	υ	U	U	· u	Ü	U	U	υ	21	18 J	5.5	18		0.5	
Cyclohexane	U	U	Ü	U	υ	Ü	U	U	2, U	, ° ,	υ	16	ł	i	5 ST
Carbon Tetrachloride	U	υ	U	U ·	U	U	U	U	U	U	0.38 J	0.42 J		0,5	 5 ST
Benzene	U	U	U	U	υ	υ	U	U	31	Ü	0.38 J 0.47 J			0.5	
1,2-Dichloroethane	U	·	Ü	υ	U	. 0	. U	U	J. U	U	0.47 J	8,1		0.5	1 ST
Trichloroethene	1,4	6.7	17	50	42	61	18	95	230			2.1		0.5	0.6 ST
Methylcyclohexane		U	,, n	JŲ U	42 U	U U	18 U			530	61 D	650 D	•	0.5	5 ST
1,2-Dichloropropane	U	u	U	U	U	U	U	. u	U	. U	U	U		0.5	
Bromodichloromethane	U	Ü	U		U	. U		U	U	U	U	U		0.5	1 ST
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	U	U	U	U		0.5	50 GV
4-Methyl-2-Pentanone	U	U	U	U	U	U	U	U	U U	U	U	U		0.5	0.4 ST*
Toluene	Ü	U	11	U	. 0	U	U	U	U	U	. U	U		5	-
trans-1,3-Dichloropropene	U	U	Ü	U	U	U	U	U	U	U	4.2	1.6	ĺ	0.5	5 ST
1,1,2-Trichloroethane	U	U	. υ	Ü	Ü	ŭ	U	U	U	U	U U	1		0.5	0.4 ST*
Tetrachioroethene	29	63	110	270	220	230	110	390	3700 D	750	410 D			0.5	1 ST
2-Hexanone	U	U	U	J. U	U.	U	U	390					l ·	0.5	5 ST
Dibromochloromethane	υ	U	. n	Ü	U	. U	U	U	. u	U	U 	U		5	50 GV
1,2-Dibromoethane	Ü	U	U	U	U		U	U	U	U	U	U		0,5	50 GV
Chlorobenzene	U	U	Ü	U	U	U	U	U	U	U	U	U 		0.5	0.006 ST
Ethylbenzene	U	u	U	U	. U	U	U	U	. U	U	U	U		0.5	5 ST
<u> </u>			<u> </u>			لتسبب	U	<u> </u>			L	U	L	0,5	5 ST

TABLE A-3 (continued)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-1	ŤMW-1	TMW-1	TMW-1	TMW-1	TMW-1		Detection	CLASS GA						
Sample Depth, ft	72	85	115	125	145	165	185	205	225	245	265	285		Limit	GROUNDWATER
Date of Collection	8/29/2008	8/29/2008	8/29/2008	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/27/2008	8/27/2008	8/27/2008	8/26/2008	8/26/2008			STANDARDS/
Dilution Factor	2.5	5	10	40	40	40	10	40	40/400	40	1/40	1/40			GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	. ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L
m/p-Xylenes	U	U	υ	Ų	U	U	U	U	U	U	U	U		0.5	5 ST
o-Xylene	U	U	u	U	U	U	U	υ	U	u	1.3	15		0.5	5 ST
Styrene	U	U	U	U	υ	υ	υ	U	, U	U	บ	U		0,5	5 ST
Bromoform	U	U	U	υ	U	U	U	U	U	U	u	υ		0.5	50 GV
Isopropyibenzene	U	U	U	U	U	υ	υ	U	U	U	U	0.62		0.5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	Ü	U	U	U	υ	U		υ		0.5	5 ST
1,3-Dichlorobenzene	υ	U	U	U	Ù	U	U	U	U	U	U	U		0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	υ	U	U	U	U	u	U	U	0.5 J		0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	υ		0,5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	U	U	U	U	U	U		0,5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	υ.	[0.5	5 ST
1,2,3-Trichlorobenzene	U	U	υ	U	U	U	U	U	U	U	U	U	[0,5	5 ST
	1		[-		1				
Total Targeted VOCs	30	70	132	334	262	308	131	485	4,187	1,433	546	1,431		l	- 1
Total TICs	0	0	0.	0	0	0	0	0	0	.0	1.88	15.4			-
Total VOCs	30	70	132	334	262	308	131	485	4,187	1,433	548	1,446	l'		

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly blased high based on validation criteria

Notes:

- TIC: Tentatively identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of Isomers
- ST**: Applies to sum of Isomers
- GV: Guidance Value

Result exceeds TOGS 1.1.1 class GA Groundwater Standard or Guidance Value

TABLE A-3 (continued)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-2	Detection	CLASS GA												
Sample Depth, ft	65	85	105	125	145.	165	185	195	210	225	245	265	285	Limit	GROUNDWATER
Date of Collection	8/21/2008	8/21/2008	8/20/2008	8/20/2008	8/20/2008	8/19/2008	8/19/2008	8/19/2008	8/19/2008	8/18/2008	8/18/2008	8/18/2008	8/18/2008	Chric	STANDARDS/
Dilution Factor	4	8	40	10	10	40	1/40	1/25	1/40	1/400	1/200	1/160	1/80		GUIDANCE VALUES
Units	ug/L	υg/L	ug/L	ug/L	ug/L	ug/L									
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	0.5	5 ST
Chloromethane	Ū	U	U	U	U	υ	U	υ	U	·	u	U	Ű	0.5	5 ST
Vinyi Chloride	U	U	U	υ	U	U	U	u	U	3.5	1,9	15	2.7	0.5	2 ST
Bromomethane	U	υ	υ	U	υ	U	u	U	U	υ	U	Ŭ.	U	0.5	5 ST
Chloroethane	υ	u	U	U	U	U	U	· U	U	U	U		U	0.5	5 ST
Trichlorofluoromethane	U	U	U	U	U	Ü	Ü	Ü	Ü	Ü	ü	Ü	U	0.5	5 ST
1,1-Dichloroethene	U	U	U	U	5 J	18 J	15	14	7.6	18	36 E	200 D	7.6	0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	υ	U	U	U	U						
Acetone	Ü	U	Ü	U	U	U	U	U	U	U U	U	U U	U	0,5	5 ST
Carbon Disulfide	U	Ü	Ü	· U	. U	U	U	U	U	u		U	U	5	50 GV
Methyl Acetate	υ	U	Ü	U.	U	Ü	U	U	U	u	U	U	U	0.5	60 GV
Methylene Chloride	U	U	Ü	U	U	U	u	U	U	0.41 B	0.33 B	1.6 B	U As B	0.5	
trans-1,2-Dichloroethene	U	U	U	Ü	U	U	0.53	U	0.55	3.9	1,9	3.4	0.6 B	0.5	5 ST
Methyl tert-butyl Ether	U	U	U	· U	Ü	U	u u	Ü	U.05	u.s	0.33 J	3.4 U	0.91 0.55	0.5 0.5	5 ST 10 GV
1,1-Dichloroethane	u	u	U	u	u	U	3,7	7	6,8	6.6	4.3	13	i i	1	
cis-1,2-Dichlorpethene	4.8	8,9	30	12	16	36	120 D	28 D	39 D				1.4	0.5	5 ST
2-Butanone	. U	U	J.	'.' U	, U						120 D	310 D	91 D	0.5	5 ST
Bromochloromethane	U	U	U	U	U	U i	U	U	U	U	U	U	υ	5	50 GV
Chloroform	u	u	U		u .			U	Ü	U	U	U	U	0.5	5 ST
1,1,1-Trichioroethane	u	U		Ü		U	2.3	3.1	2.6	11	3.3	19	1.1	0.5	7 ST
l i	ı "		U	U	3.4 J	U	7.6	7.8	2.7	6,7	21 E	88 D	3.4	0.5	5 ST
Cyclohexane Carbon Tetrachloride	U U·	U	U	U	U	U	2.7	0.78	U	4	3.6	0,88	3.2	0,5	
1 '		U	U	U	U	Ú	U	1.3	1.9	0.35 J	· U	U	U	0.5	5 ST
Benzene	1.4 J	2.5 J	U	U	3 J	34	120 D	36 D	0.57	6.1	3.8	7.5	28 DJ	0.5	1 ST
1,2-Dichloroethane	υ	U	U	U	U	U	, U	U	U	υ	U	υ	U	0.5	0.6 ST
Trichioroethene	51	90	230	120	140	310	540 D	200 D	510 D	5100 D	2000 D	2400 D	1400 D	0.5	5 ST
Methylcyclohexane	U	U	υ	U	υ	U	0.79	0.45 J	U	2.4	2.2	U	1.8	0,5	
1,2-Dichloropropane	U	U	U	U	U	υ	U	υi	U	υ	U	U	U.	0.5	1 ST
Bromodichloromethane	U	U	U	U	υ	U	U	U	U	U	U	U	U	0.5	50 GV
cis-1,3-Dichloropropene	U	U	. О	, u	Ü	U	U	U	, u	U	.u	U	Ų	0.5	0.4 ST*
4-Methyl-2-Pentanone	υ	U	U	U	υ	U	υ	· U	U	υ	Ü	U	U	5	
Toluene	U	U	U	U	U	U	0.35 J	0.37 J	U	0.37 J	U	0.43 J	0.34 J	0.5	5 ST
trans-1,3-Dichloropropene	U	U	. U	U	U	U	U	U	U	U	U	U	U	0.5	0.4 ST
1,1,2-Trichloroethane	· U	U	Ü	U	U	U	0.55	U	0.34 J	1.1	1	0.72	0.37 J	0.5	1 ST
Tetrachloroethene	48	64	130	93	130	250 B	240 D	190 D	490 D	2200 D	1100 D	2700 D	390 D	0.5	5 ST
2-Hexanone	U	U	U	U	U	U	U	υ	υ	C	U	Ü	U	5	50 GV
Dibromochloromethane	U	U	U	U	U	U	υ	U	U	υ	· u	U	υ	0.5	50 GV
1,2-Dibromoethane	U	U	U	U	U	υ	0.75	U	U	, U	· u	U	u	0.5	0,006 ST
Chlorobenzene	U	U	U	U	U	U	U	U	. U	U	u	U	U	0.5	5 ST
Ethylbenzene	U	υ	U	U	u	υ	U	U	. 0	U	U	U	u	0.5	5 ST

NT4/EngWork/2564/Design investigation/Analytical Results/VerticalProfileGWResults(VOCs) rev.xls

Page 3 of 22

4/2/2009

TABLE 4-3 (continued)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
					4+									Required	TOGS 1.1.1
Sample ID	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	TMW-2	Detection	CLASS GA
Sample Depth, ft	65	85	105	125	145	165	185	195	210	225	245	265	. 285	Limit	GROUNDWATER
Date of Collection	8/21/2008	8/21/2008	8/20/2008	8/20/2008	8/20/2008	8/19/2008	8/19/2008	8/19/2008	8/19/2008	8/18/2008	8/18/2008	8/18/2008	8/18/2008		STANDARDS/
Dilution Factor	4	8	40	10 .	10	40	1/40	1/25	1/40	1/400	1/200	1/160	1/80		GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L_	ug/L	ug/L	ug/L	ug/L	. ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
m/p-Xylenes	U	U	U	U	U	U	U	U	υ	υ	υ	υ	U	0.5	5 ST
o-Xylene	U	U	u	U	'n	U	6.5	4.9	0.49 J	35 E	22 E	4.4	11	0.5	5 ST
Styrene	U	U	U	U	ט	U	U	U	Ü	U	U	ប	U.	0.5	5 ST
Bromoform	υ	U	U	U	U	U	U	ប	Ù	U	υ	U	υ	0.5	50 GV
Isopropylbenzene	υ	U	U	υ	U	U	U	U	Ų	U	U	U	U	0.5	5 ST
1,1,2,2-Tetrachloroethane	υ	U _.	U	U	U	U	U	U	U	U	ប	υ	υ	0.5	5 ST
1,3-Dichlorobenzene	U	Ü	υ	U	IJ	U	U	U	U	U	U	U	U	0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	u '	U	. n	U	υ	U	U	U	U	· U	0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	U	U	U	0.71	U	U	U	U	u	0.37 J	0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	ប	U	U	U	U	U	U	U	U	U	U	0.5	0,04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U.	υ	U	. u	U) u	U	U	U	0.5	5 ST
1,2,3-Trichlorobenzene	U	υ	υ	U	U	U	U	υ	U	U	U	U	U	0.5	. 5 ST
]							ļ	1						Ì
Total Targeted VOCs	105	165	390	225	297	648	1,061	494	1,063	7,749	3,322	5,764	1,944	1	-
Total TICs	0	0	0	0	0	0	39.79	9.28	0	32.6	21.12	6.69	30.63	·	-
Total VOCs	105	165	390	225	297	648	1,101	503	1,063	7.782	3,343	5,771	1,975		

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly blased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- -: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of Isomers
- GV: Guidance Value

: Result exceeds TOGS 1.1.1 class GA Groundwater Standard or Guidance Value

TABLE A-3 (continued) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

													-	Contract	NYSDEC
						,						1		Required	TOGS 1.1.1
Sample ID	TMW-3D	Detection	CLASS GA												
Sample Depth, ft	52	72	92	112	132	152	172	192	212	232	252	272	297	Limit	GROUNDWATER
Date of Collection	10/1/2008	10/1/2008	10/2/2008	10/2/2008	10/3/2008	10/3/2008	10/3/2008	10/6/2008	10/6/2008	10/6/2008	10/7/2008	10/7/2008	10/8/2008	Thill.	STANDARDS/.
Dilution Factor	1	1	1	1	1	1	1	1	40	20	40	40	40		GUIDANCE VALUES
Units	ug/L														
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	0,5	5 ST
Chloromethane	U	U	U	u	u	U	U	u	U	Ü	U	Ü	U	0.5	5 ST
Vinyl Chloride	U	U	U	U	U	U	U	Ū	.U	Ü	U	ا ن	U	0.5	2 ST
Bromomethane	U	U	υ	u l	u	U	U	Ū	U	Ü	U	U	U	0,5	5 ST
Chloroethane	U	U		U	U	υ	U		U	. 0	u	Ü	U	0.5	5 ST
Trichlorofluoromethane	U	U	υ	U	U	U	U	U	U	u	ŭ	Ü	U	0.5	5 ST
1,1-Dichloroethene	U	U	U	0.23 J	U	U	U	2.5	U	16	u	29		1 1	
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	u	u	u	Ü	0.43 J		U		- 1		21	0.5	5 ST
Acetone	U	Ü	U	Ü	U U	U	0.43 J	U	U	U	U	U	U	0.5	5 ST
Carbon Disulfide	Ü	Ü	Ü	ı "ı	U	. U	U	U	U	U	U	U	U 	5	50 GV
Methyl Acetate	U.	U	Ü	ű.	u	· U	U	U	U	U	U	U	U	0,5	60 GV
Methylene Chloride	U	U	U	Ü	U	U	U	l u		U 	U	U	U	0.5	
trans-1,2-Dichloroethene	U	U	u	ĭ	U	u	U	,	υ	U 	υ	U		0.5	5 ST
Methyl tert-bulyl Ether	U	U	U	0.53	0.42 J	0.48 J	2	3.1	l · U	u 	U	U	U	0.5	5 ST
1,1-Dichloroethane	U	U	U	0.29 J	U.42 U	0.48 J	ı	ł	u	U	Ü	U	U	0.5	10 GV
cis-1,2-Dichloroethene	U	U	U	2.4	U	1	0.39 J	1.4		24	U	14 J	12 J	0.5	5 ST
	l				- 1	U	3,1	3.4	39	300	13 J	220	160	0.5	5 ST
2-Butanone Bromochioromethane	U U	U	u 	υ	U	υ	U	U	U	· u	, U	U	U	5	50 GV
1	1	, U	U	U	U	U	υ	U	Ų	U	U	U	U	0.5	5 ST
Chloroform	1.2	U	U	u	J 68.0	0.29 J	0.87	0.31 J	U .	7.7 J	U	U	8.5 J	0.5	7 ST
1,1,1-Trichloroethane	U	U	U	U	U	Ü	U	3.3	υ	5.3 J	υ	10 J	U	0.5	5 ST
Cyclohexane	U	U	. U	U	U	U	U	Ú	U	U	U.	10 J	บ	0.5	-
Carbon Tetrachloride	U	U	· u	u	U	U	U	U	U	U-	U	U	U	0.5	5 ST .
Benzene	U	. U	υ	U	U	U	U	U	U	U	U	U	U	0.5	1 ST
1,2-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	0,5	0.6 ST
Trichloroethene	U	υ	U	0.92	U	U	5.2	3.8	32	130	23	220	180	0.5	5 ST
Methylcyclohexane	υ	U	· U	υ	U	υ	U	U	Ų	Ų	U	U	U	0,5	
1,2-Dichloropropane	U	υ	· u	U	υ	U	U	U	บ	υ	U	υ	U	0.5	1 ST
Bromodichloromethane	υ	U	U	U	U	u	υ	U	U	U	U	· u	U	0.5	50 GV
cis-1,3-Dichloropropene	U	u	U	U	U	U	υ	U	U	U	U	U	U	0,5	0.4 ST*
4-Methyl-2-Pentanone	U	U	U	U	U	U	U	U	U	U	U	U	υ	5	
Toluene	U	U	U	U	υ	0,23 J	U	0.21 J	U	U	u	U	U	0.5	5 ST
trans-1,3-Dichloropropene	. U	υ	υ	Ü	· U	υ	U	U	U	U	U	U	U	0,5	0.4 \$T*
1,1,2-Trichloroethane	, n	U	U	U	U	U	U	U	υ	υ	U	υ	U	0.5	1 ST
Tetrachloroethene	U	U	U	3.2	U	U	7.1	7.9	19 J	110	13 J	440	360	0.5	5 ST
2-Hexanone	U	U	U	U	, · U .	U	U	U	U	U	U	Ü	U	5	50 GV
Dibromochloromethane	U	Ų	U	U	ີ່ ບ	U	U	U	υ	U	Ü	Ū	· U	0.5	50 GV
1,2-Dibromoethane	U	Ų	U	U	U	U	U	U	U	U	U	U	ū	0.5	0.006 ST
Chlorobenzene	U	U	U	l u		U	u	U	υ	U	· U	U	Ü	0.5	5 ST
Ethylbenzene	U	U	υ	U	υ	U	U	U	U	U	ū	Ū	U	0.5	5.ST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-3D	Detection	CLASS GA												
Sample Depth, ft	52	72	92	112	132	152	172	· 192	212	232	252	272	297	Limit	GROUNDWATER
Date of Collection	10/1/2008	10/1/2008	10/2/2008	10/2/2008	10/3/2008	10/3/2008	10/3/2008	10/6/2008	10/6/2008	10/6/2008	10/7/2008	10/7/2008	10/8/2008		STANDARDS/
Ditution Factor	1	1	1	1	1	1	1	1	40	20	40	40	40	1	GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L .	ug/L							
m/p-Xylenes	Ü	U	U	U	U	υ	U	U	U	U	U	· U	υ	0.6	5 ST
o-Xylene	U	υ	U	· U	U	U	U.	U	U	U	U	U	U	0.5	5 ST
Styrene	U	U	Ü	U	U	U	U	U	U	U -	Ü	U	U	0.5	5 ST
Bromoform	. U	U	U	U	υ	U	U	ប	U	υ	U	U	U	0.5	50 GV
Isopropylbenzene	υ	U	U	U	U	υ	U	U	υ	υ	U	υ	U	0.5	5 ST
1,1,2,2-Tetrachloroethane	Ų	U	U	U	Ü	U	U	U	υ	U	U	υ	U	0.5	. 5 ST
1,3-Dichlorobenzene	U	U	U	. υ	U.	U	u	υ	U	U	U	. u	U	0.5	3 ST**
1,4-Dichlorobenzene	U	υ	U	υ	U	U	U	U	υ	U	U	υ	· u	0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	U	Ū	υ	U	υ	υ	U	U	U	U	0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	υ	U	υ	u	U ·	U	υ	υ	บ	. U	U	U	0.5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U.	U	U	U	0.31 J	U	U	U	· U	U	0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	U	υ	. U	0.23 J	0.62	, u	U	U	υ	U	0.5	5 ST
		1	'									}	1	1	
Total Targeted VOCs	1	0	C C	8	1	1	19	27	90	593	49	943	742	l	
Total TICs	13.62	0	0	0	5.39	3.8	1	0	0	0	0	0	0	l	-
Total VOCs	15	0	0	8	6	5	20	27	90	593	49	943	742	l .	

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly blased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of Isomers
- GV: Guidance Value

TABLE A-3 (continued) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
												T .		Required	TOGS 1.1.1
Sample ID	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D			Detection	CLASS GA
Sample Depth, ft	312	337	357	377	392	412	432	452	472	492	502			Limit	GROUNDWATER
Date of Collection	10/8/2008	10/8/2008	10/9/2008	10/9/2008	10/10/2008	10/10/2008	10/10/2008	10/11/2008	10/11/2008	10/11/2008	10/11/2008				STANDARDS/
Dilution Factor	40	40	40/80	40/80	10	8	2	1	1	1	1				GUIDANCE VALUES
Units	ug/t	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	1		ug/L	ug/L
Dichtorodifluoromethane	U	U	U	U	U	U	υ	U	U	U	U		1	0.5	5 ST
Chloromethane	Ü	U	υ	U	U.	U	U	υ	U	U	U	l		0,5	5 ST
Vinyl Chloride	υ	υ	υ	υ	U	U	U	υ	υ	· U	. υ	1		0.5	2 ST
Bromomethane	u	U	U	U	. u	U	U	U	U	· U	U	l	Į.	0,5	5 ST
Chloroethane	U	U	U	U	U	U	U	υ	υ	U	U			0.5	5 ST
Trichlorofluoromethane	υ	51	14 J	U	20	36	38	υ	U	U	U		1	0.5	5 ST
1,1-Dichloroethene	39	55	300	450	7.8	3 J	0.99 J	U	U	· U	U	l	ļ	0,5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	υ	U	U	u	U	U	U	U	1	1	0,5	5 S T
Acetone	U	U	U	u	ับ	U	Ū	Ü	Ü	Ü	Ü	1		5	50 GV
Carbon Disulfide	U	U	U	U	U	U	U	U	Ü	Ü	U	1	1	0.5	50 GV
Methyl Acetate	U	U	υ	. u	· U	U	. U	U	U	U	U	1	1	0.5	
Methylene Chloride	19 BJ	16 BJ	υ	υ	U	U	U	U	U	U	U			0.5	5 ST
trans-1,2-Dichloroethene	Ú	U	Ü	U	U	บ	· U	U	U		Ü	1		0.5	5 ST
Methyl tert-butyl Ether	U	u	. U	U	U	U	Ū	Ü	Ü	Ü	U	1	1	0.5	10 GV
1,1-Dichloroethane	24	23	46	46	7.9	4.1	3.2	U	U	U	Ü			0.5	5 ST ·
cis-1,2-Dichloroethene	230	380	360	210	50	36	5.6	U	U	U	ŭ	1	1	0.5	
2-Butanone	U	U	U	U	U	U	U	U	u U	Ü	U	l		Į.	5 ST
Bromochloromethane	U	U	U	U	Ü	Ü	Ü	U	U	U	. 0	l		5	50 GV
Chloroform	9.8 j	34	29	14 J	4 J	4.5	0.92 J	U	U	U	U	1	1	0.5	5 ST
1,1,1-Trichloroethane	U	11 J	120	200	3.6 J	2 J	0.8 J	U	U	U	U	1	į	0.5 0.6	7 ST
Cyclohexane	U	U	U	U	u.	U	U	U	u			l	f		5 ST
Carbon Tetrachloride	U	u	U	u	U	U	1.1	U	U	U	U	1		0.5	
Benzene	U	U	Ü	Ü	U	U	ι.,	r.	U	U	U			0,5	5 ST
1,2-Dichloroethane	U	U	U	ü	U	Ü	U	U	υ	U	U			0.5	1 ST
Trichloroethene	130	620	900 D	930 D	130	110	19	U	U	U	ŀ	l		0.5	0.6 ST
Methylcyclohexane	U	U	U U	330 D	U	U	U	U		i	U			0,5	5 ST
1,2-Dichloropropane	U	U	U	U	U U	U	U	U	U	U	U	1		0.5	-
Bromodichloromethane	U	U	U	U	U	Ü	u	υ	U	U	U			0.5	1 ST
cis-1,3-Dichloropropene	U	U	U	Ü	U	U	U	U	u	U	U		1	0.5	50 GV
4-Methyl-2-Pentanone	U	u	Ü	v	U	Ü	U	U	U	U	U			0.5 5	0.4 ST*
Toluene	U	U	U		U	U	U	Ü	U	U	l u	1			- 0.7
trans-1,3-Dichloropropene	U.	U	. 0	Ü	. U	U	U	U	U	U	U	1		0.5	5 ST
1,1,2-Trichloroethane	U	U	U	Ü	u.	u	U	U	Ü	U	U	l	1	0,5	0.4 ST*
Tetrachioroethene	380	360	340	160	22	27	1.3		U		u	1		0.5 0.5	1 ST 5 ST
2-Hexanone	U	U	U	U		Z, U	ι	U	U	U	(1	1	1	
Dibromochioromethane	υ	u	U	U	U	. U	U	U	U	U U	U U	I	•	5	. 50 GV
1,2-Dibromoethane	Ű	u	U	u	U	Ü	U	U	U	U.	U	1		0.5	50 GV
Chlorobenzene	U	U	Ü		· U	U	U	U	. υ	U	U	l	1	0.5	0.008 ST
Ethylbenzene	Ü	u	U	Ü	U	u	U	U		Ü	U	I		0.5 0.5	5 ST 5 ST
			ļ <u>-</u>	لتستسا						<u></u>	٠	<u> </u>		U,S	551

 $NT4/EngWork/2564/Design\ Investigation/Analytical\ Results/VerticalProfileGWResults(VOCs)\ rev.xts$

Page 7 of 22

4/2/2009

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D	TMW-3D			Detection	CLASS GA
Sample Depth, ft	312	337	357	377	392	412	432	452	472	492	502			Limit	GROUNDWATER
Date of Collection	10/8/2008	10/8/2008	10/9/2008	10/9/2008	10/10/2008	10/10/2008	10/10/2008	10/11/2008	10/11/2008	10/11/2008	10/11/2008				STANDARDS/
Dilution Factor	40	40	40/80	40/80	10	8	2	1	1	1	1]	GUIDANCE VALUES
Units	ug/l	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	l	L	ug/L	ug/L
m/p-Xylenes	. U	·U	U	U	U	U	U	U	U	U	U			0.5	5 ST
o-Xylene	U	Ū	υ	u)	U	U	U	υ	U	U	υ	[0.5	5 ST
Styrene	U	U	· U	U	U	U	U	υ	υ	υ	υ			0.5	5 ST
Bromoform	U	U	U	U	U	u	U	U	IJ	U	U	1	1	0.5	50 GV
Isopropylbenzene	U	U	· U	u	U	υ	U	U	. U	υ	U	1	}	0.5	5 ST
1,1,2,2-Tetrachloroethane	U	U	u	ប		U	U	U	U	U	U	}		0,5	5 ST
1,3-Dichlorobenzene	U	U	U	u þ	U	U	U	U	U	U	U	1	ļ	0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	U	U	Ü	υ	U	U.	υ	U		Į.	0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	U	u	ប	Ü	υ	U	U	υ	1		0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	υ	U	· U	υ	U			0,5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	υ	U	υ	U	1		0.5	5 ST
1,2,3-Trichiorobenzene	U	U	U	υ	υ	U	U	U	υ	U	U			0,5	5 ST
(·									l			1	1
Total Targeted VOCs	832	1,550	2,109	2,010	245	223	71	0	0 .	0	0		-	ļ	
Total TiCs	. 0	0-	0	. 0	0	. 0	6.1	0	0	0	0			l	_
Total VOCs	832	1,550	2,109	2,010	245	223	77	0	0	0	0				

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly biased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of Isomers
- ST**: Applies to sum of Isomers
- GV: Guidance Value

TABLE A-3 (continued) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
											1			Required	TOGS 1.1.1
Sample ID	TMW-4	TMW-4	TMW-4	l	Detection	CLASS GA									
Sample Depth, ft	65	85	105	125	145	165	185	205	225	245	265	285	1	Limit	GROUNDWATER
Date of Collection	8/4/2008	8/4/2008	8/4/2008	8/4/2008	8/1/2008	8/1/2008	8/1/2008	8/1/2008	8/1/2008	7/31/2008	7/31/2008	7/31/2008			STANDARDS/
Dilution Factor	1	1	1	5	1/4	1/4	1	1/4	1	1/4	1/5	1/4			GUIDANCE VALUES
Units	ug/L	ug/L	ug/L		ug/L	ug/L									
Dichlorodifluoromethane	U	U	υ	υ	U	U	U	U	U	U	U	U		0.5	5 ST
Chloromethane	υ	U	វេ	υ	U	υ	U	U.	U	υ	Ū	Ū		0.5	5 ST
Vinyl Chloride	υ	Ú	U	. U	. υ	U	υ	U	U	υ	U	U		0.5	2 ST
Bromomethane	U	υ	Ü	Ü	U	υ	U .	U	u	U	U	U		0.5	5 ST
Chloroethane	U	· u	U	U	U	U	U	u	U	U	U	U	1	0.5	5 ST
Trichloroffüoromethane	υ	U	U	U	U	U	U	υ	U	U	U	U.		0.5	5 ST
1,1-Dichloroethene	0.36 J	U	0.3 J	2.9	1.8	7.1	2.1	11	υ	4.9	8.1	2.6		0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	υ	U	υ	U	Ų	U	U	U	U	U	U]	0.5	5 ST
Acetone	U	υ	U	ប	U	υ	u	U	U	U	u	U	1	5	50 GV
Carbon Disulfide	υ	U	U	U	U	U	Ú	U	υ	0.36 J	ū	υ		0.5	60 GV
Methyl Acetate	υ	U	U	υ	U	U	U	U	U	U		U	1	0.5	
Methylene Chloride	υ	U	U	U	U	υ	U	u	U	Ū		IJ		0.5	5 ST
trans-1,2-Dichloroethene	U	Ü	U	U	U	υ	U	U	· U	U	. u	Ü		0.5	5 S T
Methyl tert-butyl Ether	υ	U	U	U	U	· u	0.3 J	0.68	0.63	1.1	0.68	0.59		0.5	10 GV
1,1-Dichloroethane	U	U	U	3.8 U	2.6	· 13	0.38 J	1.9	U	0.84	1.2	0.53		0.5	5 ST
cis-1,2-Dichloroethene	U	U	U		0.85	1.7	0.55	3.7	U	1.7	2.6	1.4		•	5 S T
2-Butanone	υ	u	υ	u	U	u	IJ	u	U	 U	2.0 U			0.5 5	50 GV
Bromochloromethane	υ	U	υ	U	U	U	U	U	U	U	U	U	}	0.5	50 GV 5 ST
Chloroform	1,3	0.41 J	U	u	0.81	0.81	1	4.6	1	1.3	2.3	2.5		0,5	7.ST
1,1,1-Trichloroethane	U	U	U	U	0.6	2	0,58	1.7	· U	0.87	1,8	0.76		0,5	5 ST -
Cyclohexane	υ	U	U	U	U	U	U		Ü	U U	U	U.75	1	0.5	1
Carbon Tetrachloride	υ	U	U	U	U	U	Ü	U	Ü	Ü	U	υ		0.5	5.ST
Benzene	U	U	U	U	U	U	u	U	U	U	u	u		0.5	1 ST
1,2-Dichloroethane	U	· u	U	U	U	Ū	U	U	·	U	U	U		0.5	0.6 ST
Trichloroethene	1.1	0.63	0.94	17	8.9	16	11	56 D	1.2	38 D	65 D	29 D	ł	0.5	5.5T
Methylcyclohexane	Ü	U	U	U	U	U	U.	U U	u	JU U	- 65 D	29 U	•	1	
1,2-Dichloropropane	U	U	U	Ü	. U	Ü	U	U	U	U	U	U		0.5 0.5	4.07
Bromodichloromethane	U	U	U	Ü	U	Ü	U	U		u	u	U	!		1 ST
cls-1,3-Dichloropropene	U	U	U	Ü	U	·	. U	U	บ	U	l u	U		0.5 0.5	50 GV 0.4 ST*
4-Methyl-2-Pentanone	U	U	U	U	U	ŭ	Ü	U	U	.0	U	u		•	
Toluene	0.57	υ	U	U	0.69	0.54	· U	0.56	Ü	3	1.9	2,8	1	5 0.5	5 ST
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U U	U	U	1.9	2.0 U	l	1	0.4 ST*
1,1,2-Trichloroethane	U	U	U	U	U	Ü	Ü	U	Ü	U	u	U		0.5 0.5	0.4 ST
Tetrachioroethene	3,3	9.1	4.6	57	47 D	40 D	1.8	11	0.46 J	5.8	9.4	8,1	ł	1	
2-Hexanone	U	U	U	U.	ų, u	U	ı.o U	, ,	U.40 J				! .	0.5	5 ST
Dibromochloromethane	υ	U	U	U	· U	U	U	U	Ü	U	U	U		5	50 GV
1,2-Dibromoethane	Ü	Ü	Ü	U	U	Ü	U	U	U	U	U	U		0.5	50 GV
Chlorobenzene	U	u	. 0	. U	U	U	U	U	υ		U	U		0.5	0.006 ST
Ethylbenzene	Ü	U	u	. 0	u	Ü	U	U	·	U	U	U		0.5	5 ST
								U U	U	U	U	U	l	0,5	5 ST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
· ·														Required	TOGS 1.1.1
Sample ID	TMW-4	TMW-4	TMW-4		Detection	CLASS GA									
Sample Depth, ft	65	85	105	125	145	165	185	205	225	245	265	285		Limit	GROUNDWATER
Date of Collection	8/4/2008	8/4/2008	8/4/2008	8/4/2008	8/1/2008	8/1/2008	8/1/2008	8/1/2008	8/1/2008	7/31/2008	7/31/2008	7/31/2008			STANDARDS/
Dilution Factor	1	1	1	5	1/4	1/4	· 1	1/4	1	1/4	1/5	1/4			GUIDANCE VALUES
Units	ug/L	ug/L	ug/L		ug/L	ug/L									
m/p-Xylenes	U	U	υ	U	U	U	U	U	U	· U	U	. U		0.5	5 ST
o-Xylene	U	U	U	U	υ	U	Ü	υ	U	U	U	ប		0.5	5 ST
Styrene	υ	U	υ	· U	υ	U	U	U	υ	U	· U	U		0,5	5 ST
Bromoform	υ	U	υ	U	U	U '	U	ប	U	υ	υ	U		0.5	50 GV
Isopropyibenzene	U	U	υ	U.	U	Ü	U	U	U	ប	υ	U		0.5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	υ	U	U.	U	U		U	U		0.5	5 ST
1,3-Dichlorobenzene	υ	U	υ	Ų	U	U	U	U	υ	U	U	U	i	0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	U	υ	U	U	U	υ	U	U	U		0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	U	U	u	U	U	U	U _.	U	υ		0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	U	U	U	U	υ	U		0.5	0.04 ST
1,2.4-Trichlorobenzene	u	U	U	U	U	U	U	u	U	U	U	U		0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	U	υ	U	U	U	U	U	U	υ		0.5	5 ST
	Į	Į.	ŀ					}		1			1	1	
Total Targeted VOCs	7 '	10	6	81	63	81	18	91	3	58	93	48	}	l	-
Total TICs	0 .	0	0	0	0	٥	0	0	0	0	0	0]		- 1
Total VOCs	7	10	6	81	63	81	18	91	3	58	93	48		l	

Qualifiers:

- U; Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly biased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of isomecs
- ST**: Applies to sum of isomers

GV: Guidance Value

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
				1										Required	TOGS 1.1.1
Sample ID	TMW-5	TMW-5	TMW-5		Detection	CLASS GA									
Sample Depth, ft	65	85	105	125	145	165	185	205	225	245	265	285		Limit	GROUNDWATER
Date of Collection	8/13/2008	8/13/2008	8/12/2008	8/12/2008	8/12/2008	8/12/2008	8/12/2008	8/11/2008	8/11/2008	8/11/2008	8/8/2008	8/8/2008			STANDARDS/
Dilution Factor	8	8	1/80	1/80	1/160	1/50	1/50	1/50	1/40	1/50	1/20	1/20			GUIDANCE VALUES
Units	ug/L	ug/L .	ug/L	ug/L		ug/L	ug/L								
Dichlorodifluoromethane	U	U	U	U	. U	υ	0.37 J	U	U	U	υ	U	<u> </u>	0.5	5 ST
Chloromethane	U	U	υ	U	U	U	U	U	υ	Ü	U	* U		0.5	5 ST
Vinyl Chloride	U	U	4.5	7.5	8.4	59 D	71 D	81 D.	53 D	1.7	3.2	U		0.5	2 ST
Bromomethane	U	U	U	U	U	υ	U	U	U	ប	Ü	U		0.5	5 ST
Chloroethane	U	U	12	14	14	5,3	· u	υ	u`	U	U	U		0.5	5 ST
Trichlorofluoromethane	U	υ	· U	U	U	U	U	U	υ	U	U	U		0.5	5 ST
1,1-Dichloroethene	84	100	1200 DB	1300 DB	1300 DB	1000 DB	690 DB	220 D	150 D	31 D	26 D	18		0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	5.3	8.8	18	31 D	40 D	59 D	47 D	7.9	5.9	0.79		0.5	5 ST
Acetone	υ	υ	Ü	u	U	U	U	U	U	U	Ų	U		5	50 GV
Carbon Disulfide	U	U	υ	U	U	U	Ü	U	U	υ	0.32 J	U	l	0.5	60 GV
Methyl Acetate	U	U	· U	U	U	υ	U	ប	U	U	υ	υ		0.5	"
Methylene Chloride	U	U	2.5 B	5.2 B	8.6 B	5.6 B	4.2 B	2.5 8	2.6 B	υ	U	U		0.5	5 ST
trans-1,2-Dichloroethene	U	U	U	U	U	2.1	2.2	1.6	1,4	0.52	0.35 J	0.35 J	ļ	0,5	5 ST
Methyl tert-butyl Ether	U	3.5 J	. 1,9	1.3	1.8	0.35 J	U	Ü	U	U	U	υ		0.5	10 GV
1,1-Dichloroethane	110	120	1000 D	1600 D	1800 D	770 D	280 D	96 D	79 D	7.7	11	9.6	l	0.5	5 ST
cis-1,2-Dichloroethene	2.9 J	4.5	18	26 DJ	32 E	120 D	130 D	150 D	130 D	60 D	40 D	37 D	1	0.5	5 ST
2-Butanone	U	U	U	U	U	Ü	U	U	U	U	U	U	1	5	50 GV
Bromochloromethane	U	U	ប	. u	U.	U	υ	U	U	U	υ	1 _. U		0.5	5 ST
Chloroform	υ	U	1.5	1.8	1.9	6.6	8	4	3.8	2.7	2.9	1.6		0,5	7 ST
1,1,1-Trichloroethane	73	91	1400 D	1400 D	1100 D	440 D	170 D	59 D	43 D	5,5	6.9	5.4	}	0.5	5 ST
Cyclohexane	U	U	Ú	U	U	U	U	U	0.3 J	U	U	U	1	0.5	-
Carbon Tetrachloride	U	U	Ü	U	U	1.6	1.3	0.79	0.82	0.53	0.43 J	U	1	0.5	5 ST
Benzene	· u	U	U	0.41 J	0.3 J	0.56	0.66	3.5	4.5	U	0.4 J	υ	1	0,5	1 SŤ
1,2-Dichloroethane	U	U	U	5	5.5	4.8	4.4	3.5	3.9	9.5	8,8	U		0.5	0,6 ST
Trichloroethene	22	38	160 D	200 D	190 D	870 D	990 D	810 D	660 D	590 D	190 D	180 D	1	0.5	. 5 ST
Methylcyclohexane	U	U	U	Ú	U	U	U	U	U	U	U	. U	1	0.5	
1,2-Dichloropropane	U	U	U	U	u	U	U	U	U	U	u.	U		0.5	1 ST
Bromodichloromethane	U	υ	U	U	U	U	u	υ	U	U	U	U		0.5	50 GV
cis-1,3-Dichloropropene	U	U	U	υ	· u	υ	U	.U	U	υ	. U	· u	l	0.5	0,4 ST*
4-Methyl-2-Pentanone	U	υ	U	U	U	U	U	U	U	U	U	U		- 5	-
Toluene	U	U	U	0.36 J	υ	0.33 J	0.35 J	U	U	U	2.6	1.1	1	0.5	5 ST
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	U	l . n	U	U		0.5	0.4 ST*
1,1,2-Trichloroethane	Ū	U	0.38 J	U	0.85	2.5	2.6	1.6	1.3	0.4 J	U	U	j	0.5	1 ST
Tetrachloroethene	12	17	66 D	98 D	150 D	330 D	310 D	320 D	280 D	140 D	67 D	38 D		. 0.5	5 ST
2-Hexanone	Ų	U	U	Ú	U	U	U	U	U	U	U	U]	5	50 GV
Dibromochloromethane	U	υ	U	U	U	υ	U	U	U	-∪	υ	·U	1	0.5	50 GV
1,2-Dibromoethane	U	U	U	υ	U	U	U	U	U	U	U	U	ļ	0,5	0.006 ST
Chiorobenzene	U	U	U	U	0.49 J	1	1.2	1.8	1.3	U	U	U		0,5	5 ST
Ethylbenzene	U	U	U	U	U	U	· u	U	U	U	U	U	<u> </u>	0.5	5 ST

NT4/EngWork/2564/Design Investigation/Analytical Results/VerticalProfileGWResults(VOCs) rev.xls

Page 11 of 22

4/2/2009

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

													I	Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-5	TMW-5	TMW-5		Detection	CLASS GA									
Sample Depth, ft	65	85	105	125	145	165	185	205	225	245	265	285		Limit	GROUNDWATER
Date of Collection	8/13/2008	8/13/2008	8/12/2008	8/12/2008	8/12/2008	8/12/2008	8/12/2008	8/11/2008	8/11/2008	8/11/2008	8/8/2008	8/8/2008			STANDARDS/
Dilution Factor	8	8	1/80	1/80	1/160	1/50	1/50	1/50	1/40	1/50	1/20	1/20			GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	·ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L
m/p-Xylenes	U	υ	U	U	U	U	U	U	U	U	U	U		0.5	5 ST
o-Xylene	U	U	U	U	U	u	U	υ	U	U	U	υ		0.5	5 ST
Styrene	υ	U	U	U	U	U	U	U	U	U	υ	U		0.5	5 ST
Bromoform	U	. n	U	υ	U	υ	U	· U	U	u	· U	Ų		0.5	50 GV
Isopropylbenzene	u	υ	U	υ	U	U	U	Ü	υ	U	U	U		0.5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	U	u	U	U	υ	U	U	U		0.5	5 ST
1,3-Dichlorobenzene	U	U	U	υ	U	u	U	U	U	U	U	υ		0.5	3 ST**
1,4-Dichlorobenzene	v	U	U	U	υ	U	U	0.35 J	0,3 J	υ	U	U		0.5	3 ST**
1,2-Dichlorobenzene	U	υ	U	U	U	U	U	U	U	υ	υ	U		0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	U	υ	U	U	U	U	υ	U	U		0.5	0.04 ST
1,2,4-Trichlorobenzene	υ	. 0	U	U	u	U	u	U	U	U	υ	U	}	0.5	5 ST
1,2,3-Trichlorobenzene	υ	υ	U	U	U	U	υ	υ	U	U	· U	U		0.5	5 ST
														l	
Total Targeted VOCs	304	374	3,872	4,668	4,632	3,651	2,706	1,815	1,461	857	366	292	1 .	1	- 1
Total TICs	0	0	3,61	3.4	5.5	4.51	7.92	5,5	5.48	5.9	3	1.7		l	
Total VOCs	304	374	3,876	4,672	4,637	3,655	2,714	1,820	1,466	863	369	294			

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly biased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- -: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers

GV: Guidance Value

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
											i			4	TOGS 1.1.1
Sample ID	TMW-6	7MW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-È	TMW-6	TMW-6	TMW-6	TMW-6	TMW-8		Required	
Sample Depth, ft	63	83	103	123	143	163	183	203	223	243	263	283	1	Detection	CLASS GA
Date of Collection	6/25/2008	6/24/2008	6/24/2008	6/24/2008	6/24/2008	6/24/2008	6/23/2008	6/23/2008	6/23/2008	6/23/2008	6/20/2008	6/20/2008		Limit	GROUNDWATER
Dilution Factor	1.0	1.0	1.0	1/8	1.0	1.0	1.0	1/2.5	1/5	1/2.5	1.0	1.0]		STANDARDS/
Units	ug/L			1		GUIDANCE VALUES									
Dichlorodifluoromethane	U	U	U	Ŭ	U	U	U	U	U		ug/L	ug/L	 	ug/L	ug/L
Chloromethane	3.7	4.3	2.4	v	U.	u	U	U	U	U	U	U		0.5	5 ST
Vinyl Chloride	U	U	U	Ü	Ü	U	U	U	U	U	U	U		0.5	5 ST
Bromomethane	U	u	U	Ü	U	· U	Ü	U	U	U	U	U	1	0.5	2 ST
Chloroethane	U	U -	U	Ü	U	u	U	U	1	U	U	U	l	0,5	5 ST
Trichlorofluoromethane	Ü	u	Ü	ü	u	Ü	Ü	U	U	. U	U	U	1	0.5	5 ST
1,1-Dichloroethene	1.7	2.7	3.4	11	5,2	2.1	4.3	12			υ	U	Į.	0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	, U	2.7 U	0.6	3,1	J.Z	0.56	i		44 D	30 D	18	7.3	ļ	0.5	5 ST
Acetone	Ü	U	0.0 U	3.1 Ú	U	U.36		U	U	υ	U	U	}	0.5	5 ST
Carbon Disulfide	U	U	U	ŭ	U	U	U U	U	· u	U	U	U		5	50 GV
Methyl Acetate	Ü	Ü	Ü	U	u	U	l i	U	U	U	Ü	U	• •	0.5	60 GV
Methylene Chloride	U	U	U	U	U		·U	U	U	U	U	U		0.5	
trans-1,2-Dichloroethene	U	Ü	U	u	U	U	U	U	U	. u	U	U	ĺ	0.5	5 ST
Methyl tert-butyl Ether	, i	U	0,36 J	0,3 J	U ·	U	U	U	U	U	U	U		0.5	5 ST
1,1-Dichloroethane	1.3	1.9	1.3	0.86		-	-	· U	U	U	U	U	ì	0.5	10 GV
cls-1,2-Dichloroethene	1.1	1.3	1.8		1.5	1.3	3.6	9,9	20	33 D	12	11	1	0.5	5 ST
	1	1		9.8	1.6	0.91	7.5	18	0.81	0.84	0.95	0.68	l	0.5	5 ST .
2-Butanone Bromochloromethane	U	U	U	U	,U	U	υ	U	U	υ	U	υ]	5	50 GV
Chloroform	0,23 J	0.00	0.47 J	U	u '	U	U	U	u	υ	υ	U	•	0.5	5 ST
	1	0.33 J	0.41	U	U	0.23 J	υ	0.45 J	0.4 J	0.33 J	0.22 J	0.21 J		0,5	7 ST
1,1,1-Trichloroethane	0.94	2.2	2.3	7.9	4	1.8	3	6.1	16	17	9.9	4.8		0.5	5 ST
Cyclohexane	U	U	υ	U	U	υ	U	υ	U	U	U	U	}	0.5	
Carbon Tetrachloride	· U	U	. U	U	U	U	U	U	U	U	U	U		0.5	5 ST
Benzene	0.55	0.51	0.21 J	U	U	U	, U	U	U	U	U	U		0.5	1 ST
1,2-Dichloroethane	U	U	Ü	. U.	U	U	Ü	2.4	υ	U	ឋ	U	1	0.5	0.6 ST
Trichloroethene	5	8.4	11	63 D	8.9	6.2	12	16	2.7	5.8	2.4	1.2	l	0.5	5 ST
Methylcyclohexane	υ	υ	U	U	U	U	υ	U	υ	U	υ	U		0.5	- [
1,2-Dichloropropane	U	U	U	U	· U	U	U	U	U	υ	U	U	1	0.5	1 ST
Bromodichioromethane	U	. U	0.24 J	U	U	ប	U	υ	Ü	ប	U	U		0.5	50 GV
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	υ	U	υ	υ	, U		0.5	0.4 ST*
4-Methyl-2-Pentanone	U	U	U	U	U	υ	U	U	· U	U	U	U]	5	~ ·
Toluene	1.5	0.79	0.28 J	U	0.4 J	υ	U	U	U	· u	· U	U	1	0.5	5 ST
trans-1,3-Dichloropropene	U	U	U	υ	, U	. п	υ	U	U	U	U	υ	l	0.5	0.4 ST*
1,1,2-Trichloroethane	. U	υ	U	U	U	. υ	U	U	0.37 J	0.35 J	U	U	1	0.5	1 ST
Tetrachloroethene	2.9	4.6	5.5	14	8.6	3.5	6.6	22 D	48 D	5.9	16	6.4	1	0.5	5 ST
2-Hexanone	U	U	C	U	υ	U	. υ	U	U	υ	U	U	1	5	50 GV
Dibromochioromethane	U	U	U	u	U	U	U	U	, υ	· U	· U	U	l	0.5	50 GV
1,2-Dibromoethane	U	U	U	U	U	U	u	U	U	U	U	ט	}	0.5	0.006 ST
Chlorobenzene	U	U	υ	ü	U	ប	U	U	U	U	U	U	-	0.5	5 ST
Ethylbenzene	U	U	υ	U	U	U	U	U	υ	U	U	U		0.5	5 ST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-6		Detection	CLASS GA											
Sample Depth, ft	63	83	103	. 123	143	163	183	203	223	243	253	283		Limit	GROUNDWATER
Date of Collection	6/25/2008	6/24/2008	6/24/2008	6/24/2008	6/24/2008	6/24/2008	6/23/2008	6/23/2008	6/23/2008	6/23/2008	6/20/2008	6/20/2008			STANDARDS/
Dilution Factor	1.0	1.0	1.0	1/8	1.0	1.0	1.0	1/2.5	1/5	1/2.5	1.0	1.0			GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L.	ug/L		ug/L	ug/L						
m/p-Xylenes	Ü	υ	U	, U	U	Ū	U	U	U	U	υ	U		0.5	5 ST
o-Xylene	u	υ	U	υĮ	∻ U	U	. U	U	Ü	U	U	U		0.5	5 ST
Styrene	U	U	U	U	U	U	υ	U	U	U	U	U	·	0.5	5 ST
Bromoform	U	U	U	u	U	U	u	U	U	U	. U	υ		0.5	50 GV
isopropylbenzene .	U	υ	U	U	U	U	ប	U	υ	U	U	U		0.5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	υ	. u	υ	U	U	U	U	, U	U		0.5	5 ST
1,3-Dichiorobenzene	់ប	U	υ	. n	U	U	U	. и	U	, U	υ	υ		0.5	3 ST**
1,4-Dichiorobenzene	U	ט י	U	U	υ	U	U	U	υ	U	U	0.29 J		0.5	3 ST**
1,2-Dichiorobenzene	U	U	U	ប	U	U	U	U	U	U	U	· U		0.5	3 ST**
1,2-Dibremo-3-Chloropropane	U	U	U	U	U	U	U	. U	υ	υ	U	υ	1	0.5	0.04 ST
1,2,4-Trichlorobenzene	U	υ	U	U	U	U	U	U	U	U	U	, . U	1	0.5	5 ST
1,2,3-Trichlorobenzene	u	U	· U	υ	U	· U	υ	U	U	U	υ	U		0.5	5 ST
	1		}											l	
Total Targeted VOCs	19	27	30	110	30	17 .	37	87	132	93	59	32	1		-
Total TiCs	5.72 J	8.2 J	5,6 J	0 J	0 1	3.3 J	0 1	1 J	.0 1	0 J·	0 1	0 J	}	1	-
Total VOCs	25	35	35	110	30	20	37	88	132	93	59	32			-

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly blased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers

3V/- O	Irlance	Vale

TABLE A-3 (continued) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS TCL VOLATILE ORGANIC COMPOUNDS

															1
									·	<u> </u>			1	Contract	NYSDEC
Sample ID	TMW-7	TMW-7	TMW-7	TMW-7	TMW-7	TMW-7		Required	TOGS 1,1,1						
Sample Depth, ft	65	85	105	125	145	165	185	205	225	245	265	285		Detection Limit	CLASS GA
Date of Collection	7/7/2008	7/7/2008	7/7/2008	7/7/2008	7/7/2008	7/2/2008	7/2/2008 -	7/2/2008	7/1/2008	7/1/2008	7/1/2008	6/30/2008		Lister	GROUNDWATER STANDARDS/
Dilution Factor	50.0	50.0	50/100	50/100	50/100	1/50	1/1000	1/500	1/10	1/10	1/2.5	1/2.5			GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L						
Dichlorodifluoromethane	U	U	U	U	U	4.8	U	U	U	U	U	U	<u> </u>	0.5	
Chloromethane	U	U	U	u	u	U	U	ט	Ū	Ü	ü	U		0.5	5 ST 5 ST
Vinyl Chloride	U	· u	υ	U	U	U	1,9	1,8	U	U	U	Ü		0.5	2 ST
Bromomethane	υ	U	U	υ	U	U	U	υ	Ū	Ü	U	. 0	1	0.5	5 ST
Chloroethane	υ	U	U	υ	U	U	U	U	U	Ū,	. u	U		0.5	5 ST
Trichlorofluoromethane	U	U	υ	U	U	υ	U	υ	U	U	i i	u		0.5	5 ST
1,1-Dichloroethene	U	u	U	U	U	0.3 J	2.4	3	2.7	3.4	0.88	1,1		0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	υ	U	U	u	U	U	U	U	U	Ü.	U	'., U	l	0.5	5 ST
Acetone	U	U	υ	U	U	U	IJ	U	U	U	и	Ü		5	50 GV
Carbon Disulfide	U	U	υ	U	U	u	Ü	U	U	U	U	Ü	1	0.5	60 GV
Methyl Acetate	υ	υ	U	U	υ		υ	U	Ū	Ü	Ü	Ü		0.5	
Methylene Chloride	. u	U	U	Ů	U	U	U	U	U	U	Ü	U	1	0.5	5 ST.
trans-1,2-Dichloroethene	U	u	U	υ	U		1.4	1.3	U	U	U	v		0.5	5 ST
Methyl tert-butyl Ether	Ú	U	U	ប	U	0.7	U	Ü	υ	u	0.34 J	Ü		0.5	10 GV
1,1-Dichloroethane	· u	U	U	υ	U	0.35 J	0.9	1.1	5.1	5,3	0.5 J	1.5		0.5	5 ST
cis-1,2-Dichloroethene	11 J	10 J	44	36	32	14	330 DJ	300 D	1	1.2	0.82	0,58		0.5	5 ST
2-Butanone	U	U	Ü	U	U	U	U	U	U	U		U		5	50 GV
Bromochloromethane	U	U	U	υ	U	U	. U	υ	U	Ü	Ü	. 0		0.5	5 ST
Chloroform	U	U	U	υ	U	U	0.25 J	0.34 J	0.66	0.65	บ	0.36 J	· ·	0.5	7 ST
1,1,1-Trichloroethane	Ü	υ	U	U	U	0.22 J	1.8	2	1.6	1,7	0.44 J	0.63		0.5	5 ST
Cyclohexane	υ	υ	U	U	U	υ	U	U	. U	u u	u u	U		0.5	-
Carbon Tetrachloride	U	υ	U	U	. u	U	υ	U	10	11	1,6	5.7	1	0.5	5 ST
Benzene	υ	U	U	U	U	υ	U	U	U	U	U	U		0.5	1 ST
1,2-Dichloroethane	U	U	U	υ	U	υ	U	U	U	U	Ü	U		0.5	0.6 ST
Trichloroethene	17 J	14 J	45	41	44	21 DJ	390 DJ	300 D	100 D	110 D	35 D	34 D		0.5	5.5T
Methylcyclohexane	Ü	U	υ	U	U	U	Ų	U	U	U	U U	U	1	0.5	331
1,2-Dichloropropane	هن ا	U	U	U	U	υ	U	U	U	U	U	· U		0.5	1 ST
Bromodichloromethane	U	U	Ü	U	U	u	U	u	ا ن	U	u	U	İ	0.5	50 GV
cis-1,3-Dichloropropene	υ	U	U	U	Ü	U	U	U	Ū	Ü	·U	U	!	0.5	0.4 ST*
4-Methyl-2-Pentanone	U	U	U	υ	U	· u	U	U	U	Ü	U	U		5	0.4 51
Toluene	U	U	U	υ	υ	1.3	2.9	2.6	5.6	U	Ü	1.4	ļ	0.5	5 ST
trans-1,3-Dichloropropene	υ	U	U	Ü	U	U	U	U	U	U	u	ι.,	1	0.5	0.4 ST*
1,1,2-Trichloroethane	U	υ	υ	· U	u ·	Ü	U		U	U	U	U	İ	0.5	0.4 ST
Tetrachloroethene	460	470	870 D	840 D	800 D	720 DB	11,000 DB	6,500 DB	9.3	12	29 D	9.2 B	1	0.5	1
2-Hexanone	U	U	Ü	· U	U	U	U	U U	U	ız U	29 D	9.2 B	1	l	5 ST
Dibromochloromethane	U	U	Ü	Ü	U	U	U	U	U	U	U	U		. 0.5	50 GV
1,2-Dibromoethane	U	U	U	U	U	U	U	U	U	U ·	u	U	}	0.5	50 GV
Chlorobenzene	U	U	U	U	U	U	1.2	0.65	U ·	U	U	U		0.5 0.5	0.006 ST
Ethylbenzene	U	υ	U	u	U	u	u u	U		U	. 0	U		0.5	5 ST

NT4/EngWork/2564/Design Investigation/Analytical Results/VerticalProfileGWResults(VOCs) rev.xls

Page 15 of 22

4/2/2009

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-7	· TMW-7	1	Detection	CLASS GA										
Sample Depth, ft	65	85	105	125	145	165	185	205	225	245	265	285		Limit	GROUNDWATER
Date of Collection	7/7/2008	7/7/2008	7/7/2008	7/7/2008	7/7/2008	7/2/2008	7/2/2008	7/2/2008	7/1/2008	7/1/2008	7/1/2008	6/30/2008			STANDARDS/
Dilution Factor	50.0	50,0	50/100	50/100	50/100	1/50	1/1000	1/500	1/10	. 1/10	1/2.5	1/2.5			GUIDANCE VALUES
Units	ug/L		ug/L	ug/L											
m/p-Xylenes	υ	υ	U	U	U	U	υ	U	U	U	U	· U		0.5	5 ST
o-Xylene	U	U	U	U	U	υ	U	U	υ	. 0	U	U		0.5	5 ST
Styrene	U	U	U	U	υ	U	U	U	υ	υ	υ	U		0.5	5 ST
Bromofarm ·	U	υ	U	U	U	υ	υ	υ	υ	U	U	υ		0,5 .	50 GV
Isopropyibenzene	υ	U	υ	U	U	υ	U	U	U	. บ	U	U		0,5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	υ	U	u	บ	U	U	U	U	U		0.5	5 ST
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	υ	U	U	U		0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	υ	u	u	υ	1	0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	υ	U	U	0.46 J	U	U	U	U	υ	1	0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	υ	υ	υ	u	u	U	u	U	U		0.5	0.04 ST
1,2,4-Trichlorobenzene	U	[∪ · :	U	U	U	U ·	0.69	U	U	U	υ	U	1	0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	υ	: ∪	υ	U	, U	U	n.	υ	U		0.5	5 ST
	l ·	Į.						1			}	1]	
Total Targeted VOCs	488	494	959	917	876	763	11,734	7,113	136	145	69	54	1	l	
Total TICs	0	0	0	. 0	0	0	0	0	0.	0	0	0		l	-
Total VOCs	488	494	959	917	876	763	11,734	7,113	136	145	69	54	L	<u> </u>	

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly blased high based on validation criteria Notes;
- TIC: Tentatively Identified Compound
- -: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers

GV: Guidance Value

TABLE A-3 (continued) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS
TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
Sample ID .	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-BD	T1811 40				Required	TOGS 1.1.1
Sample Depth, ft	52	82	92	112	132	152	177	192	212	TMW-8D 237	TMW-8D	TMW-8D	TMW-8D	Detection	CLASS GA
Date of Collection	10/29/2008	10/30/2008	10/30/2008	10/31/2008	10/31/2008	11/3/2008	11/3/2008	11/4/2008	11/4/2008	11/6/2008	257 11/7/2008	272	292	Limit	GROUNDWATER
Dilution Factor	1	1	1	20	20	1	1	1	1	1 170/2008	10772008	11/7/2008	11/10/2008		STANDARDS/
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	1	10/25		GUIDANCE VALUES
Dichlorodifluoromethane	. U	U	U	U	U	υ	U	ug/L U				ug/L	ug/L	ug/L	ug/L
Chloromethane	U	U	U	Ü	U	Ü	U	U	U	U	U	· U	U	0.5	5 5 7
Vinyl Chloride	U	u	U	Ü	U	· U	U	U	U	U	U	U	U	0.5	5 ST
Bromomethane	U	U	U	Ü	U	U	U	u	U	U	U	U	υ	0.5	2 ST .
Chloroethane	U	Ū	U	ű	· U	U	U	U	U	U	U	. U	U	0.5	5 ST
Trichlorofluoromethane	U	U	Ü	Ű	ا ں	U	U	U	U	u 	U 	U	U	0.5	5 ST
1,1-Dichloroethene	U	U	U	U	u					U	U	U	U	0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	υ	U	Ü	U		U	U	U	U	U	U	U	72	0.5	5 ST
Acetone	U	U	U	i	U	· U	U	U	U	· U	U	U	. 0	0.5	5 ST
Carbon Disulfide	U	U	U	u	U	U	U 	· U	U	U	U	U	U	5	50 GV
Methyl Acetate	U	U	U		U	U	U	U	U	U	U	υ	U	0.5	60 GV
Methylene Chloride	0.31 JB	U	1			. U	U	υ	U	U	U	U	V	0.5	-
1 '		l .	U	7 BJ	5.4 BJ	0.23 BJ	IJ	υ	U	Ü	U	U	2.1 J	0.5	5 ST
trans-1,2-Dichloroethene	U	U	U	U	U	U	υ	υ	υ	U	U	U	. U	0.5	5 ST
Methyl tert-butyl Ether	U	υ	U	Ü	U	U	U	' υ	U	U	υ	U	U	0.5	10 GV
1,1-Dichloroethane	U	U	U	U	U	U	U	u	U	υ	U	υ	16	0.5	5 ST
cls-1,2-Dichloroethene	υ	U	. О	υ	Ųυ	υ	. 0	U	U	U	υ	U	19	0,5	5 ST
2-Butanone	υ	U	U	U	U	U	U	U	U	U	U	U	Ü	5 -	50 GV
Bromochloromethane	V	U	υ	U	υ	υ	U	U	υ	· u	. 0	U	U	0.5	5 ST
Chloroform	U	U	· u	U	U	U	0.27 J	υ	U	0.58	U	1.4	U	0.5	7 ST
1,1,1-Trichloroethane	U	U	U	U	U	· U	U	υ	U	U	U	· 0.22 J	37	0.5	5 ST
Cyclohexane	U	U	υ	U	U	U		. U	U	U	U	· U	U	0.5	
Carbon Tetrachloride	U	U	U	U	U	U	υ	U	U	U	U	U	υ	0,5	5 ST
Benzene	υ	U	U	Ù	Ü	U	U	Ū	U	U.	U	υ	٠ ں	0.5	- 1 ST
1,2-Dichloroethane	U	U	U	U	U	U	, u	υ	U	U	U	υ	· U	0.5	0.6 ST
Trichloroethene	U	U	. U	ប	υ	υ	Ü	υ	U	0.66	υ	1.2	360 D	0.5	5 ST
Methylcyclohexane	U	U	U	U	U	υ	U	· U	U	Ú	U	U	U	0.5	
1,2-Dichloropropane	U	υ	υ	. и	U	U	U	U.	U	u	U	U	Ü	0.5	1 ST
Bromodichloromethane	U	U	U	υ	U	U	U	υ	U	u	· U	Ü	Ü	0.5	50 GV
cis-1,3-Dichloropropene	υ	U	U	ប	U	U	U	Ü	U	u	U	Ü	ຍ	0.5	0.4 ST*
4-Methyl-2-Pentanone	U	U	· U	U	υ	U	U	U	U	Ü	Ü	Ü	Ŭ	5	0.43
Toluene	U	U	U	U	U	υ	U	U	U	Ü	Ü	Ü	Ü	0.5	5 ST
trans-1,3-Dichloropropene	U	U	u	υ	U	υ	U	U	U	U	U	ŭ	ŭ	0.5	0.4 ST*
1,1,2-Trichloroethane	υ	U	u	U U	U	U	U	U	Ü	. 0	Ü	Ü	U	0.5	1.5T
Tetrachloroethene	U	υ	U	U	υ	u		υ	U	u	U	1.6	290 D	0.5	5ST
2-Hexanone	U	U	U	U	u	U	U	U	U	U	U	1.0 U	290 D	•	
Dibromochloromethane	Ü	Ü	Ü	ü	Ü	. U	U	U	U	U	U	U	U	5 0,5	50 GV
1,2-Dibromoethane	U	U	u u	Ü	Ű	u	U	U	U	U	. u	U	U		50 GV
Chlorobenzene	U	Ū	Ü	Ű	Ü	3.3	Ü	U	U	U	u		İ	0.5	0.006 ST
Ethylbenzene	Ü	U	U	Ü	U	5.5 U	U	U	U	U	U	U U	U	0,5 0.5	5:ST 5:ST
	l	<u> </u>	<u> </u>	لـــــا			<u> </u>	<u>_</u>	U I	· · · · · ·	1	U	l U	0.5	581

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-8D	TMW-8D	D8-WMT	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	Detection	CLASS GA
Sample Depth, ft	52	82	92	112	132	152	177	192	212	237	257	272	292	Limit	GROUNDWATER
Date of Collection	10/29/2008	10/30/2008	10/30/2008	10/31/2008	10/31/2008	11/3/2008	11/3/2008	11/4/2008	11/4/2008	11/6/2008	11/7/2008	11/7/2008	11/10/2008	1	STANDARDS/
Dilution Factor	1	1	1	20	20	1	1	1	1	1	10	1	10		GUIDANCE VALUES
Units	ug/L,	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	· ug/L	ug/L	ug/L	ug/L
m/p-Xylenes	U	U	Ú	U	U	υ	U	U	U	Ú	U	Ų	U	0.5	5 ST
o-Xylene	U	U	u	U	U	U	U	U	U	υ	U	บ	υ	0.5	5 ST
Styrene	U	υ	U	υ	U	·U	Ü	U	ប	U	u	U	U	0.5	5 ST
Bromoform	υ	U	U	U	U	U	U	U	Ü	Ų	. u	u	U	0.5	50 GV
isopropyibenzene	U	U	U	U	U	U	U	U	.U	U	U	u	υ	0.5	5 ST
1,1,2,2-Tetrachloroethane	υ	U	U	U	U	U	υ	U	U	U	U	u	U	0.5	5 ST
1,3-Dichlorobenzene	U	U	U	u	U	U	· U	U	U	u	U	U	υ	0.5	3 ST**
1,4-Dichlorobenzene	u	U	Ü	U	U	U	υ	. U	υ	Ü	u	U	U	0.5	3 ST**
1,2-Dichlorobanzene	U	υ	υ	U	บ	U	υ	U	υ	υ	U	Ü	u .	0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	ú	U	U	U	U	υ	U	U	υ	. и	0.5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	υ	Ü	U	U	υ	υ	U	U	υ	U	0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	u	U	υ	U	U	υ	υ	U	υ	U	0.5	5 ST
											l	l	Į.	1	,
Total Targeted VOCs	0	0	0	7	5	4	o	0	0	1	0	4	796	l	
Total TICs	0	0	0	0	0	0	0.71	5.63	2.1	0	11	4.33	0		- 1
Total VOCs	0	0	0	7	5	4	1	6	2	1	11	9	796		

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly biased high based on validation criteria

Notes:

- TIC: Tentatively Identified Compound
- -: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers

3V:	Guidance	Value	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

	NAME AND THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER O										*			Contract	NYSDEC
,		-			,						<u> </u>	T .	I	Required	TOGS 1.1.1
Sample ID	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D	TMW-8D				Detection	CLASS GA
Sample Depth, ft	312	337	357	372	392	437	457	472	497	502		ļ		Limit	GROUNDWATER
Date of Collection	11/10/2008	11/10/2008	11/11/2008	11/11/2008	11/11/2008	11/13/2008	11/13/2008	11/13/2008	11/14/2008	11/14/2008			1		STANDARDS/
Dilution Factor	10/20 .	10/50	10/40	10	1	2	1.6	1.6	10	10		l		İ	GUIDANCE VALUES
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			l	ug/L	ug/L
Dichlorodifluoromethane	· U	υ	υ	U	U	U	U.	U	U	U			i e	0.5	5 ST
Chloromethane	U	υ	Ü	U	Ü.	U	U	U	U	υ				0.5	5 ST
Vinyl Chloride	U	U	U	U	U	U	υ	Ü	U	. U	-		I	0,5	2 ST
Bromomethane	U	U	U	υ	υ	υ	U	Ú	u	. u				0.5	5 ST
Chloroethane	Ų	U	U	U	U	บ	Ų	U	Ú	U				0.6	5 ST
Trichlorofluoromethane	U	u	U	U	υ	U	U	U	U	U				0.5	5 ST
1,1-Dichloroethene	73	50	32	25	0.54	4.6	0.96	13	4.2 J	4.2 J				0.5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	υ	C	Ú	U	U	U	U	U	U	Ü			1	0.5	5 ST
Acetone	U	U	Ü	U	U	U	U	U	٠ 0	U				5	50 GV
Carbon Disulfide	U	· U	U	U	U	U	υ	U	U	U			i	0.5	60 GV
Methyl Acetate	υ	U	U	U	U	· U	U	υ	U	u			}	0.5	
Methylene Chloride	U	U	U	U	U	U	U	U	3.2 BJ	2.9 BJ				0.5	5 ST
trans-1,2-Dichloroethene	υ	U	U	U	U	U	U	U	U	u				0.5	5 ST
Methyl tert-butyl Ether	U	U	U	U	υ	U	U	U	U	u		Į.		0.5	10 GV
1,1-Dichloroethane	14	9.9	7.9	6.1	0.57	7.1	1.3	20	3.2 J	U				0.5	5 ST
cis-1,2-Dichloroethene	14	43	26	13	υ	5.6	6.8	6.9	15	2.2 J				0.5	5 ST
2-Butanone	U	Ü	U	C	U	· U	υ	U	U	U			l	5	50 GV
Bromochloromethane	U	U	υ	U	u	U	U	U	Ü	U			ļ	0.5	50 GV 5 ST
Chloroform	υ	υ	υ	IJ	u	0.7 J	1	0.41 J	U	U				0.5	7 ST
1,1,1-Trichloroethane	46	36	25	16	0.43 J	3	0.82	9,7	2.7 J	4.2 J				0.5	5ST
Cyclohexane	· U	U	U	U	U	U	U	. U	U	7.2 U			1	ł	
Carbon Tetrachloride	U	υ	υ	U	U	U	U	U	U	U				0.5	
Benzene	U	U	u	υ	U	U	υ	U	u	U				0.5	5 ST
1,2-Dichloroethane	υ	υ	U	U	· U	U	v	Ü	Ü	υ				0.5 0.5	1 ST 0.6 ST
Trichloroethene	280 D	67	38	27	0.32 J	20	23	24	120	. 14	i		1	1	
Methylcyclohexane	U	U	U	Ü	U	U	U	U.	U	U				0.5	5 ST
1,2-Dichloropropane	U	· U	บ	U	U	U	U	U	U	U				0.5	
Bromodichloromethane	U	U	U	Ü	U	U	U	U	U	U				0.5	1 ST 50 GV
cls-1,3-Dichloropropene	U	υ	U	Ü	U	U	Ü	. U	u	U				0.5	
4-Methyl-2-Pentanone	U	U	u	U	Ü	u	υ	Ü	U	u				0.5 5	0.4 ST*
Toluene	υ	υ	U	Ü	U	Ü	Ü	U	Ü	บ				0.5	
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	U	u				0.5	5 ST 0.4 ST
1,1,2-Trichloroethane	U	U	U	U	U	Ü	U	U	Ü	Ü				0.5	0.4 ST
Tetrachloroethene	86	680 D	420 D	160	0.47 J	10	6.7	5,9	11	14				0.5	5 ST
2-Hexanone	U	U	U	U	U	U	U.	U	U	U				i	
Dibromochloromethane	U	U	u	Ü	U	U	U	U	U	U				. 5	50 GV
1,2-Dibromoethane	U	U	ű	U	U	U	U	U	U	U				0.5	50 GV
Chlorobenzene	U	Ü	ŭ	Ü	U	U	Ü	Ü	U	. U				0.5	0.006 ST
Ethylbenzene	U	U	U	Ü	Ü	U	· U	u		. U				0.5	5 S T
<u> </u>	·		<u> </u>			Ů.		U.	ں ا	. U			<u> </u>	0.5	5 ST

NT4/EngWork/2564/Design Investigation/Analytical Results/VerticalProfileGWResults(VOCs) rev.xls

Page 19 of 22

4/2/2009

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

													Contract	NYSDEC
													Required	TOGS 1.1.1
Sample ID	TMW-8D	DS-WMT	TMW-8D			Detection	CLASS GA							
Sample Depth, ft	312	337	357	372	392	437	457	472	497	502			Limit	GROUNDWATER
Date of Collection	11/10/2008	11/10/2008	11/11/2008	11/11/2008	11/11/2008	11/13/2008	11/13/2008	11/13/2008	11/14/2008	11/14/2008				STANDARDS/
Dilution Factor	10/20	10/50	10/40	10	1	2	1.6	1,6	10	10				GUIDANCE VALUES
Units	ug/L			ug/L	ug/L									
m/p-Xylenes	U	υ	U	U	· U	υ	C	U	· u	U			0.5	5 ST
o-Xylene	U	υ	υ	υ	U	U	U	U	U	U			0.5	5 ST
Styrene	U	, h	υ	U	. U	U	U	U	υ	ប			0.5	5 ST
Bromoform	U	U	U	υ	U	υ	υ	U	U	U			0.5	50 GV
Isopropylbenzene	υ	U	U	U	· u	U	U	U	U	U		1	0.5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	υ	u	U	υ	U	U	l		0.5	. 5 ST
1,3-Dichiorobenzene	U	U	U	u	U	U	. ù	U	U	u			0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	U	, υ	. u	U	, U	U	U	1		0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	Ü	U	U	U :	U	U	U		}	0.5	3 ST**
1,2-Dibromo-3-Chloropropane	υ	U	U	U	U	U	U	u	υ	υ			0.5	0.04 ST
1,2,4-Trichlorobenzene	U	U	·u	υ	U	U	U	υ	U	υ	1	1	0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	U		U	U	U	U	υ	l		0.5	5 ST
	l										1	1	1	
Total Targeted VOCs	513	886	549	247	2	51	41	80	159	42	l		l	-
Total TICs	0	0	0	0	0	0	0	0	0	0	1			- 1
Total VOCs	513	886	549	247	2	51	41	80	159	42	L			

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- 1: Result qualified as estimated, possibly biased high based on validation criteria

- TIC: Tentatively Identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers

GV: Guidance Value

TABLE A-3 (continued) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION NEW CASSEL INDUSTRIAL AREA VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-9	TMW-9	TMW-9	TMW-9	e-WMT	e-WMT	TMW-9	TMW-9	P-WMT	TMW-9	TMW-9	TMW-9	l	Detection	CLASS GA
Sample Depth, ft	60	80	100	120	140	160	180	200	220	240	260	280		Limit	GROUNDWATER
Date of Gollection	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/18/2008	7/18/2008	7/18/2008	7/17/2008	7/17/2008	7/17/2008	7/16/2008	7/16/2008		1	STANDARDS/
Dilution Factor	1/2.5	1/2.5	1/2	1/5	1/20	1/25	1/25	1/25	1/5	1	1	1		l	GUIDANCE VALUES
Units	ug/L		ug/L	ug/L											
Dichlorodifluoromethane	U	U	0.39 J	1.5	U	υ	C	U	U	U	U	υ		0.5	5 ST
Chioromethane	0.55	U	0.39 J	U	υ	υ	υ	U	υ	υ	υ	υ		0.5	5 ST
Vinyl Chloride	U,	U	U.	υ	U	U	U	υ	U	υ	υ	U		0.5	2 ST
Bromomethane	u	υ	0.32 J	U	U	U	U	. υ	U	U	U	Ū	l	0,5	5 ST
Chloroethane	U	U	υ	υ	U	U	U	υ	U	U	U	υ		0.5	5 ST
Trichlorofluoromethane	U	U	0.32 J	U	0.35 J	U	0.27 J	1.1	3	6.2	8,5	20		0.5	. 5 ST
1,1-Dichloroethene	0,53	0.63	. 0.58	1.1	2.8	2.6	2.5	3.4	1.9	17	20	18 .	1	0.5	5 ST
1.1,2-Trichloro-1,2,2-triffuoroethane	0.89	1	0.87	1.5	9,6	13	7.5	4.4	U	t t	U	U		0.5	5 ST
Acetone ,	6.3	U	6.7	U	U	U	U	υ	u	Ü	U	U		. 5	50 GV
Carbon Disulfide	U	U	0.55	U	U	U	U	U	U	U	U	U		0.5	60 GV
Methyl Acetate	u	U	U	U	U	U	· u	U	U	υ	U	U		0.5	
Methylene Chloride	U	U	U	U	U	U	U	υ	U	U	U	υ		0.5	5 ST
trans-1,2-Dichloroethene	U	U	0.31 J	U	U	U	· U	υ	U	U	· u	υ		0.5	5 ST
Methyl tert-butyl Ether	U	0.74	1.3	3.9	1.1	0.22 J	U	0.35 J	0.42 J	u	U	U		0.5	· 10 GV
1,1-Dichloroethane	0.4 J	0.36 J	0.4 J	0.65	1.2	1.7	1.8	3.5	2.9	15	15	16		0.5	5 ST
cis-1,2-Dichloroethene	2.1	2	1.3	3.7	12	23 D	24 D	17	. 4.4	0.71	0.85	0.84		0.5	5 ST
2-Butanone	U	υ	U	U	U	U	U	U	U	u	U	· U		5	50 GV
Bromochloromethane	U	υ	U	٠ ٠	· U	U.	· u	. U	U	U	U	Ū		0.5	5 ST
Chloroform	0.51	0.53	0.54	1	3.3	8.1	3,9	11	2.5	1.6	1.7	. 1,7		0.5	7 ST
1,1,1-Trichloroethane	U	U	0.43 J	0.4 J	1.4	1.3	1.1	1.6	0.79	8,5	8.1	8.7		0.5	5 ST
Cyclohexane	U	U	0.31 J	υ	U	υ	υ	U	υ	U	U	U		0.5	
Carbon Tetrachloride	U	υ	U	U	U	U	U	U	U	U	Ü	U	l .	0.5	5 ST
Benzene	U	υ	0.31 J	U	U	υ	U	U	U	ű	U	Ü		0.5	1 ST
1,2-Dichloroethane	U	U	U	u	U	U	, υ	U	U	0.55	0.72	0.96		0.5	0.6 ST
Trichloroethene,	12	13	15	28 D	120 D	110 D	99: D	90 D	55 D	15	17	19		0.5	5.03.
Methylcyclohexane	· U	U	0,33 J	U	U	U	U	U	U	U	 U	, U		0.5	551
1,2-Dichloropropane	υ	· U	U	U	Ū	U	Ü	U	. U	Ü	U	0	1	l .	1 ST
Bromodichloromethane	υ	U	U	U	υ	U	Ü	. U	Ü	u		U		0.5 0.5	50 GV
cis-1,3-Dichloropropene	U	u	U	U	U	U	U	U	U	u		υ		0.5	0.4 ST*
4-Methyl-2-Pentanone	U	υ	U	U	U	U	u	U	U	U	U	U		5	0.451
Toluene	U	υ	.u	. u	U	U	Ü	Ü	U	Ü	U	u		0.5	5 ST
trans-1,3-Dichloropropene	U	U	0,43 J	υ	U	U	U	U	U	Ü	١	Ü		0.5	0,4 ST*
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	u	U	Ü	U		0.5	
Tetrachioroethene	25 D	25 D	18 D	57 D	210 - D	280 D	270 D	270 DB	13 B	2.4 B	3.1	4.3			1 ST
2-Hexanone	U	U	U	U	U	U	U	ZIO DD	,, D		i .			0.5	5 ST
Dibromochloromethane	U	U	Ü	Ü	· U	IJ	U	U	U	U	U U	U 		5	50 GV
1,2-Dibromoethane	U	u	U	Ü	U	ŭ	U	U	U	U	U	U	1	0.5	50 GV
Chlorobenzene	U	U	U	Ü	Ü	Ü	u	u	U	U	U	U		0.5	0.006 ST
Ethylbenzene	u	U	U	Ü	Ü	Ü	u	ŭ	ט	U	U	U	l	0.5 0.5	5 ST 5 ST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NEW CASSEL INDUSTRIAL AREA

VERTICAL PROFILE WELLS

TCL VOLATILE ORGANIC COMPOUNDS

														Contract	NYSDEC
														Required	TOGS 1.1.1
Sample ID	TMW-9	.TMW-9	TMW-9		Detection	CLASS GA									
Sample Depth, ft	60	· 80	100	120	140	160	180	200	220	240	260	280		Limit	GROUNDWATER
Date of Collection	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/18/2008	7/18/2008	7/18/2008	7/17/2008	7/17/2008	7/17/2008	7/16/2008	7/16/2008		l	STANDARDS/
Dilution Factor	1/2.5	1/2.5	1/2	1/5	1/20	1/25	1/25	1/25	1/5	1 -	1	1		1	GUIDANCE VALUES
Units	ug/L	L	ug/L	ug/L											
m/p-Xylenes	U	U	U	U	υ	U	U	U	U	U	U	u		0,5	5 ST
o-Xylene	U	U	υ	u	U	0.9	υ	U	U	U,	υ	υ		0.5	5 ST
Styrene	U	U	U	u	ຼີບ	U	U	U	U	U	U	U		0.5	5 ST
Bromoform	U	U	U	U	U	U	U	υ	ប	U	Ų	U	1	0.5 -	50 GV
Isoprapyibenzene	U	U		υj	U	U	U	υ	υ	υ	U	· u		0.5	5ST
1,1,2,2-Tetrachloroethane	U	U.	U	U	U	U	U	U	υ	U	U	υ	İ	0.5	5 ST
1,3-Dichlorobenzene	U	U	U	U	U	U	υ	U	u	U	U	υ	}	0.5	3 ST**
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	U	U	υ	U		0.5	3 ST**
1,2-Dichlorobenzene	U	U	U	U	U	υ	U	U	U	υ	U	U		0.5	3 ST**
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	U	U	U	. u	U	U	l '	0.5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U.	U	U	U	υ	U	l	0.5	5 ST
1,2,3-Trichlorobenzene	U	U	U	υ	. U	U	U	υ	U	U	υ	U		0,5	5 ST
	1										1		1	1	1
Total Targeted VOCs	48	43	49	99	362	441	410	402	84	67	75	90		l	-
Total TICs	6.78 J	3 J	0	0.64 J	0	0	0	0	0	0	0	0		l	-
Total VOCs	55	46	49	99	362	441	410	402	84	67	75	90		L	

Qualifiers:

- U: Compound analyzed for but not detected.
- J: Compound detected at a concentration below the Contract Required Detection Limit (CRDL), Value estimated.
- B: Compound detected in method blank as well as the sample.
- D: Compound analyzed at a secondary dilution as noted in column header.
- E: Compound concentration exceeds instrument calibration range, value estimated
- *: Result qualified as estimated, possibly biased high based on validation criteria

- TIC: Tentatively Identified Compound
- --: Not established
- ST: Standard
- ST*: Applies to sum of isomers
- ST**: Applies to sum of isomers
- GV: Guidance Value

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample I	ID		EX-1 (Discharge Water)	EX-1DL (Discharge Water)	NC1A-EX-2- GW-285-0	NC1A-EX-2- GW-285-0DL	NC1A-MW- 12-GW-225-0	NC1A-MW- 13-GW-208-0	NC1A-MW- 11S-GW-225- 0
Sample De	epth	,	205	205	285	285	225	208	225
Sample T	vpe		Dischar	ge Water	Initial	Dilution	Initial	Initial	Initial
Lab Sample N	Number		C1627-01	C1627-01DL	C1848-13	C1848-13DL	C1723-01	C1723-02	C1745-01
Sampling I			3/23/2011	3/23/2011	4/12/2011	4/12/2011	3/31/2011	4/1/2011	4/4/2011
Dilution Fa	ictor		1	20	1	5	1	1	1
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	71-55-6	5	0.3 U	6 U	1 U	5 U	1.3	1 U	3.8
1,1,2,2-Tetrachloroethane	79-34-5	5	0.46 U	9.2 U	1 U	5 U	I U	IU	1 U
1,1,2-Trichloroethane	79-00-5	1	0.2 U	4 U	1 U	5 U	1 U	1 U	1 U
1,1,2-Trichlorotrifluoroethane	76-13-1	5	0.41 U	8.2 U	1 U	5 U	1 U	1 U	3.6
1,1-Dichloroethane	75-34-3	5	0.24 U	4.8 U	3.9	5 U	1.1	5.2	7.4
1,1-Dichloroethene	75-35-4	5	0.39 U	7.8 U	3.4	5 U	1.6	2.2	19
1,2,4-Trichlorobenzene	120-82-1	5	0.38 U	7.6 U	1 U	5 U	1 U	1 U	1 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	0.2 U	4 U	1 U	5 U	1 U	1 U	1 U
1,2-Dibromoethane	106-93-4	0.006	0.32 U	6.4 U	1 U	5 U	1 U	1 U	1 U
1,2-Dichlorobenzene	95-50-1	3	0.19 U	3.8 U	1 U	5 U	1 U	1 U	1 U
1,2-Dichloroethane	107-06-2	0.6	0.18 U	3.6 U	0.84 J	5 U	1 U	10	1 U
1,2-Dichloropropane	78-87-5	1	0.21 U	4,2 U	1 U	5 U	1 U	1 U	1 U
1,3-Dichlorobenzene	541-73-1	3	0.37 U	7.4 U	1 U	5 U	1 U	1 U	1 U
1,4-Dichlorobenzene	106-46-7	3	0.22 U	4.4 U	1 U	5 U	1 U	1 U	1 U
2-Butanone	78-93-3	50	1.6 U	31 U	2.9 J	25 U	5 U	5 U	5 U
2-Hexanone	591-78-6	50	1.3 U	26 U	5 U	25 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	108-10-1	 -	1.1 U	21 U	5 U	25 U	5 U	5 U	5 U
Acetone	67-64-1	50	3.3 J	32 U	15	30 D	5 U	5 U	5 U
Benzene	71-43-2	1	0.26 U	5.2 U	10	10 D	1 U	1 U	1 U
Bromodichloromethane	75-27-4	50	0.47 U	9.4 U	1 U	5 U	1 U	1 U	1 U
Bromoform	75-25-2	50	0.2 U	4 U	I U	5 U	1 U	1 U	1 U
Bromomethane	74-83-9	5	0.36 U	7.2 U	1 U	5 U	1 U	1 U	I U
Carbon Disulfide	75-15-0	ļ-	0.35 U	7 U	ΙU	5 U	1 U	iU	i U
Carbon Tetrachloride	56-23-5	5	0.2 U	4 U	1 U	5 U	1 U	I U	1 U
Chlorobenzene	108-90-7	5	0.26 U	5.2 U	1 U	5 U	1 U	l I U	1 U

Sample	ID		EX-1 (Discharge Water)	EX-1DL (Discharge Water)	NC1A-EX-2- GW-285-0	NC1A-EX-2- GW-285-0DL	NC1A-MW- 12-GW-225-0	NC1A-MW- 13-GW-208-0	NC1A-MW- 11S-GW-225- 0
Sample Do	epth		205	205	285	285	225	208	225
Sample T	ype		Dischar	ge Water	Initial	Dilution	Initial	Initial	Initial
Lab Sample N	Number		C1627-01	C1627-01DL	C1848-13	C1848-13DL	C1723-01	C1723-02	C1745-01
Sampling			3/23/2011	3/23/2011	4/12/2011	4/12/2011	3/31/2011	4/1/2011	4/4/2011
Dilution Fa	actor		1	20	1	5	1	1	1
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	0.21 U	4.2 U	1 U	5 U	1 U	1 U	1 U
Chloroform	67-66-3	7	1.6	3.8 U	1 U	5 U	1 U	0.77 J	<u>25</u>
Chloromethane	74-87-3	5	0.33 U	6.6 U	1 U	5 U	1 U	1 U	2
cis-1,2-Dichloroethene	156-59-2	5	36	43 D	16	17 D	4	1.4	41
cis-1,3-Dichloropropene^	10061-01-5	0.4	0.42 U	8.4 U	īU	5 U	1 U	1 U	1 U
Cyclohexane	110-82-7	-	0.28 U	5.6 U	1 U	5 U	1 U	IU	1 U
Dibromochloromethane	124-48-1	50	0.2 U	4 U	1 U	5 U	1 U	1 U	1 U
Dichlorodifluoromethane	75-71-8	5	0.29 U	5.8 U	ΙU	5 U	1 U	1 U	1 U
Ethyl Benzene	100-41-4	5.	0.26 U	5.2 U	1 U	5 U	1 U	1 U	1 U
Isopropylbenzene	98-82-8	5	0.11 U	2.2 U	1 U	5 U	1 U	1 U	I U
m/p-Xylenes	179601-23-1	5	0.35 U	7 U	2 U	10 U	2 U	2 U	2 U
Methyl Acetate	79-20-9	-	0.41 U	8.2 U	1 U	5 U	I U	1 U	1 U
Methyl tert-Butyl Ether	1634-04-4	10	0.7 J	8.2 U	1 U	5 U	1 U	1 U	1 U
Methylcyclohexane	108-87-2	NA	0.36 U	7.2 U	1 U	5 U	1 U	1 U	1 U
Methylene Chloride	75-09-2	5	0.2 U	4 U	1 U	5 U	1 U	1 U	1 U
o-Xylene	95-47-6	5	0.22 U	4.4 U	1.2	5 U	1 U	1 U	1 U
Styrene	100-42-5	5	0.23 U	4.6 U	1 U	5 U	1 U	1 U	1 U
t-1,3-Dichloropropene^	10061-02-6	0.4	0.4 U	8 U	1 U	5 U	1 U	1 U	1 U
Tetrachloroethene	127-18-4	5	<u>870</u> E	<u>1100</u> D	<u>120</u> E	130 D	21	3	120
Toluene	108-88-3	5	0.17 U	3.4 U	0.55 J	5 U	1 U	0.86 J	0.5 J
trans-1,2-Dichloroethene	156-60-5	5	2.4	7.8 U	1 U	5 U	1 U	1 U	1 U
Trichloroethene	79-01-6	5	<u>69</u>	<u>73</u> D	<u>120</u> E	<u>140</u> D	19	0.54 J	170 E
Trichlorofluoromethane	75-69-4	5	0.39 U	7.8 U	1 U	5 U	1 U	ΙU	1 U
Vinyl Chloride	75-01-4	2	0.35 U	7 U	1 U	5 U	1 U	1 U	1 U

Sample I	D		NC1A-MW- 11S-GW-225- 0DL	NC1A-MW- 11S-GW-225- 1 (Duplicate)	NC1A-MW- 11S-GW-225- 1DL	NC1A-MW- 11D-GW-285- 0	NC1A-MW- 11D-GW-285- 0DL	NC1A-MW-8- GW-139-0	NC1A-MW-3- GW-150-0
Sample De	pth		225	225	225	285	285	139	150
Sample To	ype	·	Dilution	Duplicate	Dilution	Initial	Dilution	Initial	Initial
Lab Sample N	umber		C1745-01DL	C1745-02	C1745-02DL	C1745-03	C1745-03DL	C1745-05	C1745-08
Sampling I			4/4/2011	4/4/2011	4/4/2011	4/4/2011	4/4/2011	4/5/2011	4/5/2011
Dilution Fa			10	1	5	1	20	1	1
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/I.	ug/L
1,1,1-Trichloroethane	71-55-6	5	10 U	3.7	5 U	<u>10</u>	20 U	1 U	4.5
1,1,2,2-Tetrachloroethane	79-34-5	5	10 U	1 U	5 U	1 U	20 U	1 U	1 U
1,1,2-Trichloroethane	79-00-5	1	10 U	1 U	5 U	1.2	20 U	1 U	1 U
1,1,2-Trichlorotrifluoroethane	76-13-1	5	10 U	1 Ü	5 U	13	<u>14</u> JD	I U	1 U
1,1-Dichloroethane	75-34-3	5	10 U	6.8	5 U	11	20 U	1 U	31
1,1-Dichloroethene	75-35-4	5	<u>22</u> D	17	<u>17</u> D	24	<u>26</u> D	1 U	82
1,2,4-Trichlorobenzene	120-82-1	5	10 U	1 U	5 U	IU	20 U	1 U	1 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	10 U	1 U	5 U	1 U	20 U	IU	1 U
1,2-Dibromoethane	106-93-4	0.006	10 U	1 U	5 U	ΙU	20 U	1 U	1 U
1,2-Dichlorobenzene	95-50-1	3	10 U	1 U	5 U	IU	20 U	I U	1 U
1,2-Dichloroethane	107-06-2	0.6	10 U	1 U	5 U	1 U	20 U	1 U	1.1
1,2-Dichloropropane	78-87-5	1	10 U	1 U	5 U	1 U	20 U	1 U	1 U
1,3-Dichlorobenzene	541-73-1	3	10 U	1 U	5 U	1 U	20 U	IU	1 U
1,4-Dichlorobenzene	106-46-7	3	10 U	1 U	5 U	ΙU	20 U	1 U	1 U
2-Butanone	78-93-3	50	50 U	5 U	25 U	5 U	100 U	5 U	5 U
2-Hexanone	591-78-6	50	50 U	5 U	25 U	5 U	100 U	5 U	5 U
4-Methyl-2-Pentanone	108-10-1	-	50 U	5 U	25 U	5 U	100 U	5 U	5 U
Acetone	67-64-1	50	50 U	5 U	25 U	5 U	100 U	5 U	5 U
Benzene	71-43-2	1	10 U	1 U	5 U	3.5	20 U	1 U	1 U
Bromodichloromethane	75-27-4	50	10 U	1 U	5 U	2.7	20 U	I U	1 U
Bromoform	75-25-2	50	10 U	1 U	5 U	1 U	20 U	IU	I U
Bromomethane	74-83-9	5	10 U	1 U	5 U	1 U	20 U	1 U	l U
Carbon Disulfide	75-15-0	-	10 U	ΙU	5 U	1 U	20 U	iŭ	1 U
Carbon Tetrachloride	56-23-5	5	10 U	1 U	5 U	1 U	20 U	1 U	1 U
Chlorobenzene	108-90-7	5	10 U	1 U	5 U	1 U	20 U	1 U	1 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample	e ID		NC1A-MW- 11S-GW-225- 0DL	NC1A-MW- 11S-GW-225- 1 (Duplicate)	NC1A-MW- 11S-GW-225- 1DL	NC1A-MW- 11D-GW-285- 0	NC1A-MW- 11D-GW-285- 0DL	NC1A-MW-8- GW-139-0	NC1A-MW-3- GW-150-0
Sample I	Depth		225	225	225	285	285	139	150
Sample '	Туре		Dilution	Duplicate	Dilution	Initial	Dilution	Initial	Initial
Lab Sample	Number		C1745-01DL	C1745-02	C1745-02DL	C1745-03	C1745-03DL	C1745-05	C1745-08
Sampling			4/4/2011	4/4/2011	4/4/2011	4/4/2011	4/4/2011	4/5/2011	4/5/2011
Dilution 1			10	1	5	1	20	1	1
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	10 U	l l U	5 U	1 U	20 U	1 U	1 U
Chloroform	67-66-3	7	26 D	23	25 D	47	48 D	1 U	0.55 J
Chloromethane	74-87-3	5	10 U	1.9	5 U	3.2	20 U	1 U	1 U
cis-1,2-Dichloroethene	156-59-2	5	<u>43</u> D	38	<u>38</u> D	92	110 D	1 U	9.4
cis-1,3-Dichloropropene^	10061-01-5	0.4	10 U	1 U	5 U	1 U	20 U	1 U	1 U
Cyclohexane	110-82-7	-	10 U	1 U	5 U	IU	20 U	1 U	1 U
Dibromochloromethane	124-48-1	50	10 U	1 U	5 U	3.1	20 U	1 U	I U
Dichlorodifluoromethane	75-71-8	5	10 U	1 U	5 U	l l U	20 U	1 U	10
Ethyl Benzene	100-41-4	5	10 U	1 U	5 U	l U	20 U	1 U	1 U
Isopropylbenzene	98-82-8	5	10 U	1 U	5 U	lU	20 U	10	1 U
m/p-Xylenes	179601-23-	5	20 U	2 U	10 U	2 U	40 U	2 U	2 U
Methyl Acetate	79-20-9	 -	10 U	1 U	5 U	1 U	20 U	I U	1 U
Methyl tert-Butyl Ether	1634-04-4	10	10 U	1 U	5 U	1 U	20 U	1 U	1 U
Methylcyclohexane	108-87-2	NA	10 U	ΙU	5 U	I U	20 U	1 U	ΙŪ
Methylene Chloride	75-09-2	5	10 U	1 U	<u>5</u> U	1.2	20 U	l I U	I U
o-Xylene	95-47-6	5	10 U	1 U	5 U	0.52 J	20 U	1 1 1 1	10
Styrene	100-42-5	5	10 U	1 U	5 U	1 U	20 U	1 U	1 U
t-1,3-Dichloropropene^	10061-02-6	0.4	10 U	1 U	5 U	1 U	20 U	1 U	10
Tetrachloroethene	127-18-4	5	140 D	100	<u>120</u> D	350 E	460 D	1 U	4
Toluene	108-88-3	5	10 U	I U	5 U	ĪU	20 U	1 U	1 U
trans-1,2-Dichloroethene	156-60-5	5	10 U	1 U	5 U	3.7	20 U	ĪŪ	1 U
Trichloroethene	79-01-6	5	<u>190</u> D	160 E	170 D	330 E	400 D	i U	110
Trichlorofluoromethane	75-69-4	5	10 U	I U	5 U	7.9	20 U	1 U	1 U
Vinyl Chloride	75-01-4	2	10 U	1 U	5 U	1 U	20 U	1 U	1 U

Sample I	D		NC1A-MW-4 GW-199-0	NC1A-MW-4- GW-199-0DL	NC1A-MW-9- GW-315-0	1	NC1A-EW- 2C-GW-514-0	NC1A-EX-1- GW-205-0	NC1A-EX-1- GW-205-0DL
Sample De	pth		199	199	315	131	514	205	205
Sample T	ype		Initial	Dilution	Initial	Initial	Initial	Initial	Dilution
Lab Sample N	umber		C1745-09	C1745-09DL	C1789-01	C1789-03	C1789-04	C1789-05	C1789-05DL
Sampling I	Date		4/5/2011	4/5/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011
Dilution Fa	ictor		1	20	1	1	1	1	10
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	71-55-6	5	<u>160</u> E	<u>190</u> D	ΙU	1 U	ΙU	1 U	10 U
1,1,2,2-Tetrachloroethane	79-34-5	5	1 U	20 U	1 U	ΙÜ	1 U	1 U	10 U
1,1,2-Trichloroethane	79-00-5	1	1.3	20 U	IU	1 U	1 U	1 U	10 U
1,1,2-Trichlorotrifluoroethane	76-13-1	5	1 U	20 U	1 U	2.9	1 U	ΙU	10 U
1,1-Dichloroethane	75-34-3	5	110	130 D	1 U	IU	0.65 J	1 U	10 U
1,1-Dichloroethene	75-35-4	5	450 E	600 D	0.54 J	1 U	1 U	1 U	10 U
1,2,4-Trichlorobenzene			1 U	20 U	1 U	1 U	1 U	1 U	10 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	1 U	20 U	1 U	I U	1 U	1 U	10 U
1,2-Dibromoethane	106-93-4	0.006	1 U	20 U	1 U	1 U	1 U	1 U	10 U
1,2-Dichlorobenzene	95-50-1	3	1 U	20 U	1 U	1 U	1 U	1 U	10 U
1,2-Dichloroethane	107-06-2	0.6	3.4	20 U	1 U	1 U	1 U	1 U	10 U
1,2-Dichloropropane	78-87-5	1	1 U	20 U	I U	1 U	1 U	1 U	10 U
1,3-Dichlorobenzene	541-73-1	3	1 U	20 U	1 U	I U	1 U	I U	10 U
1,4-Dichlorobenzene	106-46-7	3	1 U	20 U	1 U	ΙU	1 U	1 U	10 U
2-Butanone	78-93-3	50	5 U	100 U	5 U	5 U	5 U	5 U	50 U
2-Hexanone	591-78-6	50	5 U	100 U	5 U	5 U	5 U	5 U	50 U
4-Methyl-2-Pentanone	108-10-1	-	5 U	100 U	5 U	5 U	5 U	5 U	50 U
Acetone	67-64-1	50	5 U	100 U	5 U	5 U	5 U	5 U	50 U
Benzene	71-43-2	1	1 U	20 U	1 U	1 U	ΙU	1 U	10 U
Bromodichloromethane	75-27-4	50	1 U	20 U	1 U	1 U	1 U	1 U	10 U
Bromoform			1 U	20 U	1 U	1 U	1 U	1 U	10 U
Bromomethane			1 U	20 U	1 U	ΙU	1 U	1 U	10 U
Carbon Disulfide			1 U	20 U	I U	IU	1 U	1 U	10 U
Carbon Tetrachloride	56-23-5	5	1 U	20 U	1 U	1 U	1 U	1 U	10 U
Chlorobenzene				20 U	ıU	1 U	1 U	1 U	10 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample	ID		NC1A-MW-4- GW-199-0	NC1A-MW-4 GW-199-0DL	NC1A-MW-9- GW-315-0	1	NC1A-EW- 2C-GW-514-0	NC1A-EX-1- GW-205-0	NC1A-EX-1- GW-205-0DL
Sample D	epth		199	199	315	131	514	205	205
Sample T	vpe	· · · · · · · · · · · · · · · · · · ·	Initial	Dilution	Initial	Initial	Initial	Initial	Dilution
Lab Sample			C1745-09	C1745-09DL	C1789-01	C1789-03	C1789-04	C1789-05	C1789-05DL
Sampling			4/5/2011	4/5/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011	4/6/2011
Dilution F			1	20	1	1	1	1	10
Analyte	thane 75-00-3 50		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	1 U	20 U	1 U	1 U	ıU	1 U	10 U
Chloroform	67-66-3	7	1.1	20 U	1 U	1 U	IU	1.8	10 U
Chloromethane	74-87-3	5	1 U	20 U	1 U	1 U	1 U	1 U	10 U
cis-1,2-Dichloroethene	156-59-2	5	18	<u>20</u> JD	0.6 J	0.72 J	iŪ	14	12 D
cis-1,3-Dichloropropene^	10061-01-5	0.4	1 U	20 U	1 U	1 U	1 U	1 U	10 U
Cyclohexane	110-82-7	-	1 U	20 U	1 U	1 1 U	1 U	1 U	10 U
Dibromochloromethane	124-48-1	50	1 U	20 U	I U	IU	1 U	1 U	10 U
Dichlorodifluoromethane	75-71-8	5	1 U	20 U	1 U	1 U	I U	iU	10 U
Ethyl Benzene	100-41-4	5	1 U	20 U	IU	1 U	1 U	i U	10 U
Isopropylbenzene	98-82-8	5	1 U	20 U	1 U	IU	IU	1 U	10 U
m/p-Xylenes	179601-23-1	5	2 U	40 U	2 U	2 U	2 U	2 U	20 U
Methyl Acetate	79-20-9	•	1 U	20 U	1 U	l U	1 U	1 U	10 U
Methyl tert-Butyl Ether	1634-04-4	10	1 U	20 U	1 U	1 U	1 U	0.97 J	10 U
Methylcyclohexane	108-87-2	NA	l U	20 U	1 Ü	1 U	1 U	1 U	10 U
Methylene Chloride	75-09-2	5	1 U	20 U	1 U	1 U	1 U	1 U	10 U
o-Xylene	95-47-6	5	1 U	20 U	1 U	1 U	1 U	1 U	10 U
Styrene	100-42-5	5	1 U	20 U	ΙŪ	1 U	1 U	I U	10 U
t-1,3-Dichloropropene^	10061-02-6	0.4	1 U	20 U	1 U	1 U	1 U	JU	10 U
Tetrachloroethene	127-18-4	5	<u>35</u>	<u>38</u> D	1 U	0.62 J	1 U	270 E	300 D
Toluene	108-88-3	5	1 U	20 U	1 U	0.63 J	1 U	īU	10 U
trans-1,2-Dichloroethene	156-60-5	5	1 U	20 U	1 U	1 U	1 U	1 U	10 U
Trichloroethene	79-01-6	5	<u>470</u> E	<u>620</u> D	2.3	4.1	1 U	23	<u>21</u> D
Trichlorofluoromethane	75-69-4	5	1 U	20 U	ΙU	1 U	ΙU	īU	10 U
Vinyl Chloride				20 U	1 U	0.6 J	1 U	1 U	10 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample I	D		NC1A-MW- 10-GW-284-0	NC1A-MW-6- GW-128-0	NC1A-MW-6- GW-128-0DL	NC1A-MW- 16S-GW-225- 0	NC1A-MW- 16D-GW-285- 0	NC1A-EW- 1B-GW-158-0	NC1A-EW- 1C-GW-516-0
Sample De	pth		284	128	128	225	285	158	516
Sample Ty	vpe		Initial	Initial	Dilution	Initial	Initial	Initial	Initial
Lab Sample N	umber		C1789-06	C1789-07	C1789-07DL	C1789-08	C1789-09	C1789-10	C1789-11
Sampling I			4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/8/2011	4/8/2011
Dilution Fa			1	1	5	1	1	1	1
Analyte	oethane 71-55-6 5 hloroethane 79-34-5 5			ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane		5	<u>10</u>	<u>140</u> E	<u>130</u> D	1 U	3.1	1 U	1 U
1,1,2,2-Tetrachloroethane	79-34-5	5	1 U	1 U	5 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	79-00-5	1	1 U	1 U	5 U	1 U	1 U	1 U	1 U
1,1,2-Trichlorotrifluoroethane	76-13-1	5	1 U	1 U	5 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	75-34-3	5	<u>13</u>	<u>160</u> E	140 D	1 U	3.1	1 U	ΙU
1,1-Dichloroethene	75-34-3 5 75-35-4 5		24	<u>140</u> E	120 D	1 U	6.3	1 U	1 U
1,2,4-Trichlorobenzene	120-82-1	5	1 U	1 U	5 U	1 U	IU	1 U	1 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	1 U	1 U	5 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	106-93-4	0.006	1 U	1 U	5 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	95-50-1	3	1 U	1 U	5 U	1 U	I U	1 U	1 U
1,2-Dichloroethane	107-06-2	0.6	1 U	1.6	5 U	1 U	I U	1 U	1 U
1,2-Dichloropropane	78-87-5	1	1 U	1 U	5 U	I U	1 U	1 U	ΙU
1,3-Dichlorobenzene	541-73-1	3	1 U	١U	5 U	ΙU	1 U	1 U	1 U
1,4-Dichlorobenzene	106-46-7	3	1 U	1 U	5 U	1 U	1 U	ΙŪ	1 U
2-Butanone	78-93-3	50	5 U	5 U	25 U	5 U	5 U	5 U	5 U
2-Hexanone	591-78-6	50	5 U	5 U	25 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	108-10-1	-	5 U	5 U	25 U	5 U	5 U	5 U	5 U
Acetone	67-64-1	50	5 U	5 U	25 U	5 U	5 U	5 U	4.6 J
Benzene	71-43-2	1	1 U	1 U	5 U	1 U	1 U	IU	1 U
Bromodichloromethane	75-27-4	50	1 U	I U	5 U	1 U	1 U	ĪŪ	1 U
Bromoform			1 U	1 U	5 U	1 U	1 U	iU	l U
Bromomethane	74-83-9	5	1 U	1 U	5 U	1 U	1 U	1 U	1 U
Carbon Disulfide	75-15-0	-	1 U	1 U	5 U	1 U	1 U	i U	1 U
Carbon Tetrachloride	56-23-5	5	1 U	1 U	5 U	1 U	īŪ	I U	1 U
Chlorobenzene				1 U	5 U	1 U	1 U	1 U	1 U

Sample	ID		NC1A-MW- 10-GW-284-0	NC1A-MW-6- GW-128-0	NC1A-MW-6- GW-128-0DL	NC1A-MW- 16S-GW-225- 0	NC1A-MW- 16D-GW-285- 0	NC1A-EW- 1B-GW-158-0	NC1A-EW- 1C-GW-516-0
Sample Do	epth		284	128	128	225	285	158	516
Sample T	ype		Initial	Initial	Dilution	Initial	Initial	Initial	Initial
Lab Sample !	Number		C1789-06	C1789-07	C1789-07DL	C1789-08	C1789-09	C1789-10	C1789-11
Sampling			4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/8/2011	4/8/2011
Dilution F			1	1	5	1	1	1	1
Analyte	75-00-3 50 67-66-3 7 74-87-3 5			ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	1 U	1 U	5 U	ΙU	1 U	1 U	IU
Chloroform	67-66-3 7 74-87-3 5			1.2	5 U	0.97 J	6.4	1 U	īŪ
Chloromethane	74-87-3	5	1 U	ΙU	5 U	I U	1 U	1 U	1 U
cis-1,2-Dichloroethene	ethene 156-59-2 5			7.8	5.2 D	IU	6.1	l J	1 U
cis-1,3-Dichloropropene^	ethene 156-59-2 5 propene^ 10061-01-5 0.4			1 U	5 U	1 U	1 U	1 U	I U
Cyclohexane	oropropene^ 10061-01-5 0.4 110-82-7 -			1 U	5 U	I U	1 U	1 U	1 U
Dibromochloromethane	124-48-1	50	1 U	1 U	5 U	1 U	IU	l U	1 U
Dichlorodifluoromethane	75-71-8	5	1 U	1 U	5 U	1 U	IU	1 U	1 U
Ethyl Benzene	100-41-4	5	1 U	1 U	5 U	1 U	1 U	I U	1 U
Isopropylbenzene	98-82-8	5	1 U	1 U	5 U	1 U	IU	ıU	1 U
m/p-Xylenes	179601-23-1	5	2 U	2 U	10 U	2 U	2 U	2 U	2 U
Methyl Acetate	79-20-9	-	1 U	1 U	5 U	ΙU	IU	1 U	1 U
Methyl tert-Butyl Ether	1634-04-4	10	1 U	7.5	5.9 D	1 U	3.6	1 U	iU
Methylcyclohexane	108-87-2	NA	1 U	1 U	5 U	ΙU	1 U	l U	1 U
Methylene Chloride	75-09-2	5	1 U	1 U	5 U	1 U	1 U	1 U	1 U
o-Xylene	95-47-6	5	ΙU	1 U	5 U	1 U	IU	ıÜ	1 U
Styrene	100-42-5	5	ΙU	1 U	5 U	١U	ΙU	1 U	1 U
t-1,3-Dichloropropene^	10061-02-6	0.4	1 U	1 U	5 U	ΙU	1 U	IU	I U
Tetrachloroethene	127-18-4	5	8.5	<u>15</u>	<u>11</u> D	1 U	2.7	1.9	1 U
Toluene	iene 108-88-3 5		1 U	1 U	5 U	0.52 J	1 U	IU	iU
trans-1,2-Dichloroethene				1 U	5 U	1 U	1 U	1 U	1 U
Trichloroethene	79-01-6	5	63	91	<u>77</u> D	ΙU	29	1.3	1 U
Trichlorofluoromethane	75-69-4	5	1 U	IU	5 U	1 U	ĪU	ΙU	1 U
Vinyl Chloride				1 U	5 U	1 U	1 U	1 U	1 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample I	D		NC1A-MW- 17S-GW-228- 0	NC1A-MW- 17D-GW-287- 0	NC1A-MW- 17D-GW-287- 0DL	NC1A-MW- 15-GW-204-0	NC1A-MW- 14-GW-200-0	NC1A-MW- 14-GW-200- 0DL	NC1A-MW- 14-GW-200-1
Sample De	pth		228	287	287	204	200	200	200
Sample T	vne		Initial	Initial	Dilution	Initial	Initial	Dilution	Duplicate
Lab Sample N			C1789-12	C1789-13	C1789-13DL	C1848-01			<u> </u>
Sampling I			4/8/2011	4/8/2011	4/8/2011	4/11/2011	C1848-02 4/11/2011	C1848-02DL	C1848-03
Dilution Fa			1	1	10	1	1	4/11/2011	4/11/2011
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	71-55-6	5	1 U	<u>36</u>	<u>34</u> D	1 U	1 U	10 U	1 U
1,1,2,2-Tetrachloroethane	79-34-5	5	1 U	<u>23</u>	<u>24</u> D	1 U	1 U	10 U	1 U
1,1,2-Trichloroethane	79-00-5	1	1 U	<u>5.4</u>	<u>5.9</u> JD	ΙU	ΙU	10 U	1 U
1,1,2-Trichlorotrifluoroethane	76-13-1	5	1 U	i U	10 U	1 U	1 U	10 U	1 U
1,1-Dichloroethane	75-34-3	5	1 U	<u>11</u>	10 U	ΙU	1 U	10 U	1 U
1,1-Dichloroethene	75-35-4	5	1 U	1.5	10 U	1 U	1 U	10 U	1 U
1,2,4-Trichlorobenzene	120-82-1	5	1 U	1 U	10 U	1 U	1 U	10 U	1 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	IU	1 U	10 U	l U	1 U	10 U	1 U
1,2-Dibromoethane	106-93-4	0.006	1 U	1 U	10 U	1 U	1 U	10 U	I U
1,2-Dichlorobenzene	95-50-1	3	1 U	1 U	10 U	1 U	1 U	10 U	1 U
1,2-Dichloroethane	107-06-2	0.6	IU	I U	10 U	ΙŪ	1 U	10 U	1 U
1,2-Dichloropropane	78-87-5	1	1 U	ΙU	10 U	1 U	1 U	10 U	1 U
1,3-Dichlorobenzene	541-73-1	3	1 U	1 U	10 U	1 U	١U	10 U	1 U
1,4-Dichlorobenzene	106-46-7	3	1 U	1 U	10 U	1 U	ĪŪ	10 U	1 U
2-Butanone	78-93-3	50	5 U	5 U	50 U	5 U	5 U	50 U	5 U
2-Hexanone	591-78-6	50	5 U	5 U	50 U	5 U	5 U	50 U	5 U
4-Methyl-2-Pentanone	108-10-1	-	5 U	5 U	50 U	5 U	5 U	50 U	5 U
Acetone	67-64-1	50	5 U	4.1 J	50 U	5 U	5 U	50 U	5 U
Benzene	71-43-2	1	1 U	1 U	10 U	ΙŪ	I U	10 U	1 U
Bromodichloromethane	75-27-4	50	I U	11	9.2 JD	1 U	I U	10 U	1 U
Bromoform	75-25-2	50	ΙU	1.5	10 U	I U	l U	10 U	i U
Bromomethane	74-83-9	5	I U	1 U	10 U	1 U	I U	10 U	1 U
Carbon Disulfide	75-15-0	-	1 U	I U	10 U	1 U	iU	10 U	1 U
Carbon Tetrachloride	56-23-5	5	1 U	2.7	10 U	1 U	I U	10 U	1 U
Chlorobenzene	108-90-7	5	1 U	1 U	10 U	1 U	1 U	10 U	1 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample I	ID .		NC1A-MW- 17S-GW-228- 0	NC1A-MW- 17D-GW-287- 0	NC1A-MW- 17D-GW-287- 0DL	NC1A-MW- 15-GW-204-0	NC1A-MW- 14-GW-200-0	NC1A-MW- 14-GW-200- 0DL	NC1A-MW- 14-GW-200-1
Sample De	epth		228	287	287	204	200	200	200
Sample T	ype		Initial	Initial	Dilution	Initial	Initial	Dilution	Duplicate
Lab Sample N	lumber		C1789-12	C1789-13	C1789-13DL	C1848-01	C1848-02	C1848-02DL	C1848-03
Sampling I	Date		4/8/2011	4/8/2011	4/8/2011	4/11/2011	4/11/2011	4/11/2011	4/11/2011
Dilution Fa	ictor		1	1	10	1	1	10	1
Analyte	oethane 75-00-3 50		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	1 U	J 1U 10U 1U		1 U	10 U	1 U	
Chloroform			ΙU	54	57 D	1 U	1 U	10 U	1 U
Chloromethane			ΙU	1.4	10 U	١U	1 U	10 U	1 U
cis-1,2-Dichloroethene	156-59-2	5	1 U	630 E	830 D	1 U	23	23 D	23
cis-1,3-Dichloropropene^	10061-01-5	0.4	1 U	1 U	10 U	I U	1 U	10 U	1 U
Cyclohexane	110-82-7	-	ΙU	ΙU	10 U	1 U	1 U	10 U	1 U
Dibromochloromethane	124-48-1	50	1 U	6.2	5.4 JD	1 U	1 U	10 U	1 U
Dichlorodifluoromethane	75-71-8	5	ΙU	<u>15</u>	<u>16</u> D	1 U	0.75 J	10 U	0.8 J
Ethyl Benzene	100-41-4	5	IU	1 U	10 U	1 U	1 U	10 U	1 U
Isopropylbenzene	98-82-8	5	1 U	1 U	10 U	1 U	1 U	10 U	1 U
m/p-Xylenes	179601-23-1	5	2 U	2 U	20 U	2 U	2 U	20 U	2 U
Methyl Acetate	79-20-9	!-	1 U	1 U	10 U	1 U	1 U	10 U	ΙU
Methyl tert-Butyl Ether	1634-04-4	10	1 U	1 U	10 U	2.7	1.6	10 U	1.7
Methylcyclohexane	108-87-2	NA	1 U	1 U	10 U	1 U	1 U	10 U	1 U
Methylene Chloride	75-09-2	5	1 U	1 U	10 U	1 U	1 Ü	10 U	ΙU
o-Xylene	95-47-6	5	1 U	1 U	10 U	1 U	1 U	10 U	1 U
Styrene	100-42-5	5	1 U	ΙŪ	10 U	IU	1 U	10 U	1 U
t-1,3-Dichloropropene^	10061-02-6	0.4	1 U	1 U	10 U	1 U	1 U	10 U	1 U
Tetrachloroethene	127-18-4	5	ΙU	530 E	<u>610</u> D	IU	330 E	380 D	<u>350</u> E
Toluene	108-88-3	5	1 U	1 U	10 U	1 U	1 U	10 U	ΙU
trans-1,2-Dichloroethene	156-60-5	5	1 U	<u>40</u>	41 D	1 U	1 U	10 U	1 U
Trichloroethene	79-01-6	5	I U	<u>580</u> E	<u>740</u> D	1 U	30	<u>30</u> D	31
Trichlorofluoromethane	75-69-4	5	IU	1 U	10 U	1 U	1 U	10 U	1 U
Vinyl Chloride				1 U	10 U	I U	1 U	10 U	1 U

Sample I			NC1A-MW- 14-GW-200- 1DL	NC1A- FSMW-13B- GW-128-0	NC1A- FSMW-13B- GW-128-0DL	NC1A- FSMW-13C- GW-249-0	NC1A- FSMW-13C- GW-249-0DL	NC1A- FSMW-14A- GW-139-0	NC1A- FSMW-14A- GW-139-0DL
Sample De	pth		200	128	128	249	249	139	139
Sample T	ype		Dilution	Initial	Dilution	Initial	Dilution	Initial	Dilution
Lab Sample N	umber		C1848-03DL	C1848-04	C1848-04DL	C1848-07	C1848-07DL	C1848-10	C1848-10DL
Sampling I	Date		4/11/2011	4/11/2011	4/11/2011	4/11/2011	4/11/2011	4/12/2011	4/12/2011
Dilution Fa	ctor		10	1	5	1	10	1	500
Analyte	richloroethane 71-55-6 5		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	71-55-6	5	10 U	1 U	5 U	1 U	10 U	1 U	500 U
1,1,2,2-Tetrachloroethane			10 U	1 U	5 U	1 U	10 U	1 U	500 U
1,1,2-Trichloroethane			10 U	1 U	5 U	ΙU	10 U	1 U	500 U
1,1,2-Trichlorotrifluoroethane	ethane 76-13-1 5		10 U	1 U	5 U	1 U	10 U	ΙU	500 U
1,1-Dichloroethane			10 U	1 U	5 U	1.8	10 U	1 U	500 U
1,1-Dichloroethene	75-35-4	5	10 U	1 U	5 U	2.9	10 U	2.2	500 U
1,2,4-Trichlorobenzene	120-82-1	5	10 U	1 U	5 U	1 U	10 U	3.6	500 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	10 U	1 U	5 U	1 U	10 U	1 U	500 U
1,2-Dibromoethane	106-93-4	0.006	10 U	1 U	5 U	I U	10 U	1 U	500 U
1,2-Dichlorobenzene	95-50-1	3	10 U	1 U	5 U	1 U	10 U	1.1	500 U
1,2-Dichloroethane	107-06-2	0.6	10 U	1 U	5 U	1 U	10 U	1 U	500 U
1,2-Dichloropropane	78-87-5	1	10 U	1 U	5 U	1 U	10 U	1 U	500 U
1,3-Dichlorobenzene	541-73-1	3	10 U	ΙU	5 U	IU	10 U	1 U	500 U
1,4-Dichlorobenzene	106-46-7	3	10 U	1 U	5 U	1 U	10 U	I U	500 U
2-Butanone	78-93-3	50	50 U	5 U	25 U	5 U	50 U	5 U	2500 U
2-Hexanone	591-78-6	50	50 U	5 U	25 U	5 U	50 U	5 U	2500 U
4-Methyl-2-Pentanone	108-10-1	-	50 U	5 U	25 U	5 U	50 U	5 U	2500 U
Acetone	67-64-1	50	50 U	5 U	25 U	5 U	50 U	5 U	2500 U
Benzene	71-43-2	1	10 U	1 U	5 U	ΙU	10 U	1 U	500 U
Bromodichloromethane	75-27-4	50	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Bromoform	75-25-2	50	10 U	1 U	5 U	1 U	10 U	I U	500 U
Bromomethane	74-83-9	5	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Carbon Disulfide	75-15-0	-	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Carbon Tetrachloride	56-23-5	5	10 U	1 U	5 U	13	13 D	1 U	500 U
Chlorobenzene	108-90-7	5	10 U	1 U	5 U	<u> </u>	10 U	2.8	500 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs) NCIA OU3 Study Area NYSDEC Site # 130043

Sample	ID		NC1A-MW- 14-GW-200- 1DL	NC1A- FSMW-13B- GW-128-0	NC1A- FSMW-13B- GW-128-0DL	NC1A- FSMW-13C- GW-249-0	NC1A- FSMW-13C- GW-249-0DL	NC1A- FSMW-14A- GW-139-0	NC1A- FSMW-14A- GW-139-0DL
Sample De	epth		200	128	128	249	249	139	139
Sample T	vpe		Dilution	Initial	Dilution	Initial	Dilution	Initial	Dilution
Lab Sample N			C1848-03DL	C1848-04	C1848-04DL	C1848-07	C1848-07DL	C1848-10	C1848-10DL
Sampling			4/11/2011	4/11/2011	4/11/2011	4/11/2011	4/11/2011	4/12/2011	4/12/2011
Dilution F:			10	1	5	1	10	1	500
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Chloroform	67-66-3 7 74-87-3 5		10 U	1 U	5 U	2.7	10 U	1 U	500 U
Chloromethane	74-87-3	5	10 U	1 U	5 U	ΙU	10 U	ΙÜ	500 U
cis-1,2-Dichloroethene	156-59-2	5	24 D	6.1	5.7 D	<u>61</u>	<u>71</u> D	500 E	600 D
cis-1,3-Dichloropropene^	156-59-2 5 10061-01-5 0.4		10 U	1 U	5 U	1 U	10 U	I U	500 U
Cyclohexane	110-82-7	-	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Dibromochloromethane	124-48-1	50	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Dichlorodifluoromethane	75-71-8	5	10 U	1 U	5 U	1 U	10 U	ΙU	500 U
Ethyl Benzene	100-41-4	5	10 U	1 U	5 U	1 U	10 U	IU	500 U
Isopropylbenzene	98-82-8	5	10 U	1 U	5 U	1 U	10 U	1 U	500 U
m/p-Xylenes	179601-23-1	5	20 U	2 U	10 U	2 U	20 U	2 U	1000 U
Methyl Acetate	79-20-9	-	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Methyl tert-Butyl Ether	1634-04-4	10	10 U	0.69 J	5 U	ΙU	10 U	1.4	500 U
Methylcyclohexane	108-87-2	NA	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Methylene Chloride	75-09-2	5	10 U	1 U	5 U	1 U	10 U	1 U	500 U
o-Xylene	95-47-6	5	10 U	1 U	5 U	ΙÜ	10 U	1 U	500 U
Styrene	100-42-5	5	10 U	1 U	5 U	1 U	10 U	ΙU	500 U
t-1,3-Dichloropropene^	10061-02-6	0.4	10 U	1 U	5 U	ΙU	10 U	1 U	500 U
Tetrachloroethene	127-18-4	5	<u>400</u> D	<u>240</u> E	260 D	25	34 D	12000 E	16000 D
oluene 108-88-3 5		5	10 U	1 U	5 U	1 U	10 U	1.1	500 U
rans-1,2-Dichloroethene 156-60-5 5			10 U	I U	5 U	1.1	10 U	6.7	500 U
Trichloroethene				<u>17</u>	<u>15</u> D	330 E	410 D	1800 E	1800 D
Trichlorofluoromethane	75-69-4	5	10 U	1 U	5 U	1 U	10 U	1 U	500 U
Vinyl Chloride				1 U	5 U	1 U	10 U	1 U	500 U

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs) NCIA OU3 Study Area NYSDEC Site # 130043

Sample I	D		NC1A- FSMW-14B- GW-167-0	NC1A- FSMW-14B- GW-167-0DL	NC1A- FSMW-14C- GW-251-0
Sample De	pth		167	167	251
Sample T	vpe		Initial	Dilution	Initial
Lab Sample N			C1848-11	C1848-11DL	C1848-12
Sampling I		~	4/12/2011	4/12/2011	4/12/2011
Dilution Fa			1	10	1
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	71-55-6	5	<u>22</u>	<u>24</u> D	1 U
1,1,2,2-Tetrachloroethane	79-34-5	5	1 U	10 U	1 U
1,1,2-Trichloroethane	79-00-5	1	1 U	10 U	1 U
1,1,2-Trichlorotrifluoroethane	76-13-1	5	1 U	10 U	1 U
1,1-Dichloroethane	75-34-3	5	2.7	10 U	<u>5.4</u>
1,1-Dichloroethene	75-35-4	5	<u>8.3</u>	<u>9.9</u> JD	3
1,2,4-Trichlorobenzene	120-82-1	5	1 U	10 U	1 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	1 U	10 U	1 U
1,2-Dibromoethane	106-93-4	0.006	1 U	10 U	1 U
1,2-Dichlorobenzene	95-50-1	3	1 U	10 U	1 U
1,2-Dichloroethane	107-06-2	0.6	1 U	10 U	1 U
1,2-Dichloropropane	78-87-5	1	1 U	10 U	1 U
1,3-Dichlorobenzene	541-73-1	3	l U	10 U	1 U
1,4-Dichlorobenzene	106-46-7	3	1 U	10 U	1 U
2-Butanone	78-93-3	50	5 U	50 U	5 U
2-Hexanone	591-78-6	50	5 U	50 U	5 U
4-Methyl-2-Pentanone	108-10-1	-	5 U	50 U	5 U
Acetone	67-64-1	50	5 U	50 U	5 U
Benzene	71-43-2	1	1 U	10 U	1 U
Bromodichloromethane	75-27-4	50	I U	10 U	1 U
Bromoform	75-25-2	50	1 U	10 U	I U
Bromomethane	74-83-9	5	1 U	10 U	1 U
Carbon Disulfide	75-15-0	-	1 U	10 U	I U
Carbon Tetrachloride	56-23-5	5	1 U	10 U	<u>7.3</u>
Chlorobenzene	108-90-7	5	1 U	10 U	IU

Table 2 - Groundwater Samples Analytical Results - April 2011 (VOCs)

NCIA OU3 Study Area

NYSDEC Site # 130043

Sample	ID.		NC1A- FSMW-14B- GW-167-0	NC1A- FSMW-14B- GW-167-0DL	NC1A- FSMW-14C- GW-251-0
Sample D	epth		167	167	251
Sample T	vne		Initial	Dilution	Initial
Lab Sample !		· · · · · · · · · · · · · · · · · · ·	C1848-11	C1848-11DL	C1848-12
Sampling			4/12/2011	4/12/2011	4/12/2011
Dilution F:		- Provide Seal	1	10	1
Analyte	CAS#	NYSDEC Class GA Standards (ug/L) ◊	ug/L	ug/L	ug/L
Chloroethane	75-00-3	50	ΙŪ	10 U	1 U
Chloroform	67-66-3	7	1 U	10 U	2
Chloromethane	74-87-3	5	1 Ü	10 U	1 U
cis-1,2-Dichloroethene	156-59-2	5	1.2	<u>15</u>	
cis-1,3-Dichloropropene^	10061-01-5	0.4	1 U	10 U	ΙU
Cyclohexane	110-82-7	-	IU	10 U	1 U
Dibromochloromethane	124-48-1	50	1 U	10 U	1 U
Dichlorodifluoromethane	75-71-8	5	1 U	10 U	1 U
Ethyl Benzene	100-41-4	5	1 U	10 U	ΙU
Isopropylbenzene	98-82-8	5	1 U	10 U	1 U
m/p-Xylenes	179601-23-1	5	2 U	20 U	2 U
Methyl Acetate	79-20-9	-	1 U	10 U	LU
Methyl tert-Butyl Ether	1634-04-4	10	1 U	10 U	1 U
Methylcyclohexane	108-87-2	NA	1 U	10 U	I U
Methylene Chloride	75-09-2	5	1 U	10 U	1 U
o-Xylene	95-47-6	5	ΙU	10 U	l U
Styrene	100-42-5	5	1 U	10 U	1 U
t-1,3-Dichloropropene^	10061-02-6	0.4	1 U	10 U	1 U
Tetrachloroethene	127-18-4	5	<u>510</u> E	<u>640</u> D	<u>5.5</u>
Toluene	108-88-3	5	0.53 J	10 U	1 U
trans-1,2-Dichloroethene	156-60-5	5	1 U	10 U	1 U
Trichloroethene	79-01-6	5	<u>7.6</u>	8.3 JD	<u>66</u>
Trichlorofluoromethane	75-69-4	5	1 U	10 U	īU
Vinyl Chloride	75-01-4	2	1 U	10 U	1 U

Notes:

- ◊ NYSDEC TOGS 1.1.1 Class Ga Groundwater Standards
- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

E (Organics) - Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.

E (Inorganics) - The reported value is estimated because of the presence of interference.

- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- ^- Applies to the sum of cis- and trans-1,3-dichloropropene, CAS Nos. 10061-01-5 and 10061-02-6, respectively.

Values that are bold and underlined exceed NYSDEC TOGS 1.1.1 Class Ga Groundwater Standards, example

10

Table 4-2 Volatile Organic Compounds in Groundwater Samples Collected from Monitoring Wetls GTE Operations Support Incorporated Former Sylvania Electric Products Incorporated Facility Hicksville, New York

	*********									Sample ID	and Analy	tical Result (ug/L)								
Chemical of Potential Concern	NYSDEC GA	MW-03	MW-04	MW-08	MW-09	MW-10	MW-11	MW-12	MW-13D	MW-135	MW-14D	MW-14DD	MW-145	MW-15D	MW-15DD	MW-155	MW-16D	MW-165	MW-175	MW-18I	MW-185
	Standard (ug/L)	04/06/10	04/07/10	04/06/10	04/08/10	04/08/10	04/07/10	04/07/10	04/02/10	03/24/10	03/23/10	03/22/10	03/22/10	03/23/10	03/23/10	03/23/10	04/07/10	04/07/10	03/23/10	03/31/10	04/01/10
1,1,1,2-Tetrachloroethane	5	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	10	1 U	10	1 U	1 U	1 U	1 U	1 U	10	10	10	10
1,1,1-Trichloroethane	5	10	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 U	0.43 J	10	1 U	1 U	1 U	1 U	0.74 J	10	10	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	10	1 U	1 U	10	1 U	1 U	1 U	10	10	10	1 U	10	10
1,1,2-Trichloroethane	1	1 U	9.1 U	10	11 U	40 U	11 U	4 U	10	10	10	10	1 U	1 U	1 U	1 U	1 U	10	1 Ų	1 U	1 U
1,1-Dichloroethane	5	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	10	1 U	0.55 /	10	1 U	1 U	1 U	1 U	1.1	1 U	10	1 U	10
1,1-Dichloroethene	5	1 U	9.1 U	1 U	11 U	40 U	11 0	4 U	1 U	1 U	0.34 J	10	1 U	1 U	10	10	0.48 J	1 U	10	1 U	10
1,2-Dichlorobenzene	3	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	10	1 U	1 U	1 U	1 U	1 U	10	10	10	10	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	9.1 U	10	11 U	40 U	11 U	4 U	1 U	10	1 U	10	10	1 U	1 U	10	10	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1	10	9.1 U	1 U	11 U	40 U	11 U	4 U	10	10	1 U	10	10	1 U	1 U	10	10	10	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	9.1 U	10	11 U	40 U	11 U	4 U	1 U	1 U	10	10	1 U	10	1 U	1 U	1 U	10	10	1 U	1 U
1,4-Dichlorobenzene	3	10	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 U	10	10	1 U	1 U	1 U	10	1 U	10	10	1 U	1 U
1,4-Dioxane (Method 8260)	NA NA	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1,4-Dioxane (Method 8270)	NA	1.9	1 U	0.19 J	1 U	10	1 U	0.18 J													10
2-Butanone	50	10 ∪	91 U	10 U	110 U	400 U	110 U	40 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone*	50	10 U	91 U	10 U	110 U	400 U	110 U	40 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	NA	10 U	91 U	10 U	110 U	400 U	110 U	40 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acetone*	50	10 U	91 U	10 U	110 U	400 U	110 U	40 U	10 U	10 U	10 U	3.5 J	10 U	2.71	10 U	10 U	10 UJ				
Benzene	1	10	9.1 U	1 U	11 U	40 U	11 U	4 U	10	1 U	1 U	1 U	1 U	1 U	1 U	10	10	10	10	1 U	10
Bromodichloromethane*	50	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	10	10	1 U	1 U	10	1 U	1 U	1 U	10	10	10	1 U	1 U
Bromoform*	50	10	9.1 U	10	11 U	40 U	11 U	4 U	10	10	10	0.97 J	10	10	10	10	10	10	10	1 UJ	1 UJ
Bromomethane	5	10	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	10	1 U	1 U	1 UJ
Carbon disulfide	NA	10	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	10	10
Carbon tetrachloride	5	1 UJ	9.1 UJ	1 UJ	11 UJ	40 UJ	11 UJ	4 UJ	1 UJ	10	10	1 UJ	1 UJ	10	1 U	10	1 UJ	1 U	1 U	1 U	10
Chlorobenzene	5	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	10	1 U	10	1 U	1 U	10	1 U	10	1 U	1 U	1 U	1 U	10
Chloroethane	5	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 UJ	1 UJ	1 U	10	1 UJ	1 UJ	1 UJ	10	10	1 UJ	1 U	1 UJ
Chloroform	7	10	9.1 U	10	11 U	40 U	11 U	9.5	1 U	1 U	1 U	10	10	10	1 U	3.6	10	0.48 J	10	14	0.97 J
Chloromethane	NA	1 U	9.1 U	10	11 U	40 U	11 U	4 U	0.37 J	1 UJ	1 UJ	1 U	1 U	1 UJ	1 UJ	1 UJ	10	1 U	1 UJ	1 U	10
cis-1,2-Dichloroethene	5	1.3	9.1 U	10	11 U	40 U	11 U	4 U	1 U	1 U	10	10	1 U	1 U	1 U	1 U	10	10	10	1 U	10
cis-1,3-Dichloropropene**	0.4	10	9.1 U	1 U	11 U	40 U	11 U	4 U	10	10	10	10	10	10	1 U	1 U	1 U	1 U	10	1 U	1 U
Ethylbenzene	5	10	9.1 U	1 U	11 U	40 U	11 U	4 U	10	1 U	10	10	10	1 U	1 U	1 U	10	10	10	10	1 U
Methylene chloride	5	10	9.1 U	10	11 U	40 U	11.U	4 U	10	10	1 U	10	10	10	10	1 U	10	10	1 U	1 U	1 U
Styrene	5	10	9.1 U	1 U	11 U	40 U	11 U	4 U	10	10	1 U	10	10	10	1 U	1 U	10	10	1 U	1 U	10
Tetrachloroethene	5	39	330	10	420	1400	420	150 J	0.36 J	1 U	10	10	1 U	1 U	1 U	0.2 J	0.23 J	10	1.3	1 U	1.9
Toluene	5	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	10	10	1 U	10	1 U	1 U	1 U	10	10	10	1 U	10	1 U
trans-1,2-Dichloroethene	5	1 U	9.1 U	10	11 U	40 U	11 U	4 U	1 U	10	10	10	1 U	1 U	1 U	1 U	10	10	1 U	10	1 U
trans-1,3-Dichloropropene**	0.4	1 U	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	10	10	1 U	1 U	10
Trichloroethene	5	1.7	2.6 J	ر 0.91	11 U	40 U	11 U	2.2 J	1 U	1 U	0.42 J	1υ	1 U	10	10	1 U	1.9	10	10	10	10
Vinyl chloride	2	10	9.1 U	1 U	11 U	40 U	11 U	4 U	1 U	1 U	10	10	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U
Xylenes (total)	NA NA	2 U	18 U	2 U	22 U	80 U	22 U	8 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 ∪

^{*} Guidance Value

NA= not applicable --=Not Analyzed "B" Associated with a result if the compound was also identified in the corresponding method blank.

"E" This flag identifies compounds whose concentrations exceed the calibration range of the instrument for the specific analysis;

data qualified with an "E" are qualitative only and not reliable for quantitative purposes.

All results qualified with an "E" were required to be re-analyzed using an applicable dilution and re-reported,

"D" This flag identifies compounds whose concentration is from a secondary dilution analysis.

"U" The compound was analyzed for, but was not detected above the reporting limit.

"J" The compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample.

"N" The analysis indicates the presence of a compound for which there is presumptive evidence to make a "tentative identification".
"N]" The analysis indicates the presence of a compound that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

"U]" The compound was not detected above the reporting limit. However, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the compound in the sample.

R" The sample result is "rejected" due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.

The result is unusable. The presence or absence of the compound cannot be verified.

[&]quot;Sum of these compounds can not exceed 0.4 ug/L.

⁼above applicable standard or MCL

Table 4-2 Volatile Organic Compounds in Groundwater Samples Collected from Monitoring Wells GTE Operations Support Incorporated Former Sylvania Electric Products Incorporated Facility Hicksville, New York

	NYSDEC GA	1									Sample ID a	nd Analyti	cal Result (ug/L)		······						
Chemical of Potential Concern	Standard (ug/L)	MW-19D	MW-195	MW-20D	MW-201	MW-20S	MW-21D	MW-211	MW-215	MW-22D	MW-221	MW-225	MW-23D	MW-231	MW-23S	MW-24D	MW-245	MW-25D	MW-251	MW-25S	MW-26D	MW-261
	Standard (ug/L)	03/31/10	03/24/10	04/05/10	04/01/10	04/01/10	03/24/10	03/24/10	03/24/10	04/01/10	04/01/10	03/31/10	03/31/10	03/29/10	03/29/10	03/31/10	03/31/10	03/31/10	03/31/10	03/31/10	03/29/10	03/31/10
1,1,1,2-Tetrachioroethane	5	1 U	1 U	1 U	1 U	10	1 U	1 U	10	10	10	62 U	1 U	10	10	1 U	1.4 U	10	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	5	1.2	10	1 U	1 U	1 U	0.25 J	0.43 J	1 U	1 U	10	62 U	0.66 J	1 U	10	1.9	1.4 U	10	1 88.0	U88.0	1	1 U
1,1,2,2-Tetrachioroethane	5	1 U	1 U	1 U	10	1 U	10	10	1 U	1 U	1 U	62 U	1 U	1 U	10	1 U	1.4 U	1 U	1 U	1 U	10	10
1,1,2-Trichloroethane	1	1 U	10	1 U	10	10	10	10	1 U	10	10	62 U	1 U	1 U	1 U	1 U	1.4 U	1 U	1 U	1 U	10	1 U
1,1-Dichloroethane	5	1.5	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	62 U	1.1	0.25 J	1 U	2,6	1.4 U	1 U	1 U	1 U	1.2	10
1,1-Dichloroethene	5	1.2	1 U	1 U	1 U	1 U	0.21 J	10	1 U	1 U	10	62 U	0.64 J	1 U	1 U	1.8	1.4 U	1 U	0.77 J	0.92 J	1	10
1,2-Dichlorobenzene	3	1 U	1 U	10	10	10	10	10	1 U	10	10	62 U	10	10	10	1 U	1.4 U	1 U	10	10	10	10
1,2-Dichloroethane	0.6	1 U	10	10	10	10	10	1 U	1 U	10	10	62 U	10	1 U	1 U	0.21 J	1.4 U	10	1 U	1 U	1 U	10
1,2-Dichloropropane	1	1 U	1 U	10	10	1 U	10	10	1 U	10	1 U	62 U	1 U	1 U	10	1 U	1.4 U	10	10	1 U	1 U	10
1,3-Dichlorobenzene	3	1 U	1 U	10	10	1 U	10	1 U	10	10	1 U	62 U	1 U	1 U	1 U	1 U	1.4 U	1 U	10	10	1 U	10
1,4-Dichlorobenzene	3	1 U	1 U	1 U	10	1 U	1 U	10	1 U	10	10	62 U	1 U	1 U	10	1 U	1.4 U	1 U	10	1 U	1 U	10
1,4-Dioxane (Method 8260)	NA NA	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1,4-Dioxane (Method 8270)	NA NA					10		T				10		-			_				-	-
2-Butanone	50	10 U	620 U	10 U	0.971	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U									
2-Hexanone*	50	10 U	620 U	10 U	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U									
4-Methyl-2-pentanone (MIBK)	NA	10 U	620 U	10 U	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U									
Acetone*	50	10 U	10 U	10 U	10 UJ	10 UJ	10 U	10 U	0.741	10 U	10 U	620 U	10 UJ	10 U	10 U	10 UJ	14 UJ	10 UJ	10 UJ	10 UJ	10 U	10 UJ
Benzene	1	1 U	1 U	1 U	10	1.0	10	1 U	10	10	1 U	62 U	0.33 J	1 U	1 U	1 U	1.4 U	1 U	10	1 U	10	10
Bromodichloromethane*	50	10	10	10	1 U	10	10	10	1 U	10	10	62 U	10	1 U	1 U	1 U	1.4 U	10	10	10	1 U	10
Bromoform*	50	1 UJ	10	10	1 UJ	1 UJ	10	10	1 U	10	1 U	62 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1.4 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
Bromomethane	5	1 U	1 U	10	1 UJ	1 UJ	1 U	10	1 U	1 U	1 U	62 U	1 UJ	1 U	10	1 UJ	1.4 UJ	1 UJ	1 UJ	1 UJ	1 U	1 UJ
Carbon disulfide	NA NA	10	10	1 U	1 U	1 U	10	1 U	1 U	10	10	62 U	0.61 J	1 U	1 U	1 U	1.4 U	10	10	1 U	10	10
Carbon tetrachloride	5	1 U	10	1 ())	1 U	10	10	1 U	10	10	10	62 U	1 U	1 U	10	10	1.4 U	10	10	1 U	10	10
Chlorobenzene	5	1 U	10	10	1 U	1 U	1 U	10	10	1 U	10	62 U	1 U	10	0.21 J	1 U	1.4 U	1 U	1 U	1 U	1 U	10
Chloroethane	5	10	1 UJ	1 U	1 UJ	1 UJ	1 U)	1 UJ	1 UJ	1 UJ	1 UJ	62 U	1 UJ	1 U	10	1 UJ	1.4 UJ	1 UJ	1 UJ	1 UJ	1 U	1 UJ
Chloroform	7	1 U	10	2	9.9	0.57 J	10	1 U	1 U	3	16	62 U	0.43 J	10	10	0.18 J	1.4 U	10	1 U	10	1 U	10
Chloromethane	NA	10	1 j	1 U	10	1 U	10	10	1 U	1 UJ	1 UJ	62 U	0.171	1 U	10	10	1.4 U	10	10	1 U	10	10
cis-1,2-Dichloroethene	5	10	10	1 U	1 U	1 U	10	10	1 U	10	1 U	62 U	1 U	10	1 U	10	1.4 U	10	10	1 U	10	10
cis-1,3-Dichloropropene**	0.4	10	10	1 U	10	1 U	10	1 U	10	10	1 U	62 U	10	1 U	1 U	1 U	1.4 U	1 U	10	1 U	10	1 U
Ethylbenzene	5	10	10	1 U	10	1 U	10	10	1 U	1 U	10	62 U	10	1 U	10	1 U	1.4 U	10	10	10	1 U	10
Methylene chloride	5	10	10	1 U	10	1 U	10	10	1 U	10	1 U	62 U	10	1 U	1 U	1 U	1.4 U	10	1 U	1 U	10	10
Styrene	5	10	1 U	1 U	1 U	1 U	1 U	10	1 U	10	1 U	62 U	10	1 U	1 U	1 U	1.4 U	10	1 U	1 U	1 U	1 U
Tetrachloroethene	5	0.64 J	0.61 J	0.261	10	5.1	0.43	10	10	4.4	1 U	1800	2	0.32 J	0.66 J	1.6	31	0.25 J	10	10	1.1	0.19 J
Toluene	5	1 U	1 U	1 U	1 U	10	10	10	1 U	10	1 U	62 U	10	1 U	10	10	1.4 U	1 U	10	1 U	1 U	10
trans-1,2-Dichloroethene	5	10	1 U	10	10	1 U	10	10	10	10	10	62 U	1 U	10	10	1 U	1.4 U	10	10	1 U	10	10
trans-1,3-Dichloropropene**	0.4	1 U	10	1 U	10	1 U	10	1 U	1 U	10	10	62 U	10	1 U	10	1 U	1.4 U	10	10	1 U	1 U	10
Trichloroethene	5	2.6	10	10	10	1 U	0.471	10	10	10	10	91	0.891	0.34 J	10	7.4	1.4 U	10	10	10	2.2	10
Vinyl chloride	2	10	1 U	10	1 U	1 U	10	1 U	10	10	10	62 U	10	1 U	10	1 U	1.4 U	10	10	1 U	1 U	10
Xylenes (total)	NA NA	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	120 U	2 U	2 U	2 U	2 U	2.9 U	2 U	2 U	2 U	2 U	2 U

^{*} Guidance Value

NA= not applicable

--=Not Analyzed

[&]quot;Sum of these compounds can not exceed 0.4 ug/L.

Table 4-2 Volatile Organic Compounds in Groundwater Samples Collected from Monitoring Wells GTE Operations Support Incorporated Former Sylvania Electric Products Incorporated Facility Hicksville, New York

Chemical of Potential Concern	NYSDEC GA	T									Sample	ID and Ana	lytical Resi	uit (ug/L)									
	Standard (ug/L)	MW-27D	MW-275	MW-28D	MW-281	MW-285	MW-29S	MW-30D	MW-301	MW-305	MW-31D	MW-311	MW-32D	MW-33D	MW-33S	MW-34D	MW-345	MW-39S	MW-415	MW-421	MW-435	MW-445	MW-495
	Standard (dg/L)	04/02/10	04/07/10	03/31/10	03/31/10	03/31/10	03/23/10	04/01/10	04/02/10	04/01/10	04/01/10	04/01/10	03/23/10	04/02/10	04/02/10	04/05/10	04/05/10	03/24/10	03/31/10	04/01/10	04/01/10	04/01/10	03/31/10
1,1,1,2-Tetrachioroethane	5	10	10	1 U	1 U	11 U	11 U	10	2.2 U	1 U	1.4 U	10	10	2.5 U	3.3 U	10	10	33 U	1 U	1 U	10	10	1 U
1,1,1-Trichloroethane	5	2	1 U	10	10	11 U	11 U	6.4	72	10	1.4 U	1.4	10	2.5 U	3.3 U	0.31	10	33 U	1 U	1 U	10	1 U	10
1,1,2,2-Tetrachloroethane	5	10	1 U	1 U	1 U	11 U	11 U	10	2.2 U	10	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	1 U	1 U	1 U	10	10
1,1,2-Trichloroethane	1	10	10	10	1 U	11 U	11 U	10	2.5	1 U	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	1 U	10	10	10	10
1,1-Dichloroethane	5	2	1 U	10	10	11 U	11 U	0.27 J	2.5	10	1.4 U	0.41	1 U	2.5 €	3.3 U	0.57 J	10	33 U	10	1 U	10	1 U	10
1,1-Dichloroethene	5	1.3	1 U	10	10	11 U	11 U	3.8	48	10	1.4 U	0.861	1 U	2.5 U	3.3 U	0.22 J	10	33 U	10	10	10	10	1 U
1,2-Dichlorobenzene	3	1 U	10	10	1 U	11 U	11 U	1 U	2.2 U	10	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	1 U	10	10	10	1 U
1,2-Dichloroethane	0.6	10	1 U	10	10	11 U	11 U	10	1.1	10	1.4 U	1 U	10	2.5 U	3.3 U	10	10	33 U	1 U	10	10	10	10
1,2-Dichioropropane	1	1 U	10	10	1 U	11 U	11 U	1 U	2.2 U	10	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	10	1 U	10	10	10
1,3-Dichlorobenzene	3	10	10	1 U	10	11 U	11 U	1 U	2.2 U	1 U	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	10	10	10	10	10
1,4-Dichlorobenzene	3	10	10	10	10	11 U	11 U	10	2.2 U	10	1.4 U	1 U	10	2.5 U	3.3 U	1 U	10	33 U	10	10	10	10	10
1,4-Dioxane (Method 8260)	NA NA	R	R	R	R	R	R	R	R	R	2100 J	R	R	R	R	R	R	R	R	R	R	R	R
1,4-Dioxane (Method 8270)	NA			-		10	-	-			-				10	-		-		0.22 J	10		
2-Butanone	50	10 U	10 U	100	10 U	110 U	110 U	10 U	22 U	10 U	14 U	10 U	10 U	25 U	33 U	10 U	10 U	330 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone*	50	10 U	10 U	10 U	10 U	110 U	110 U	10 U	22 U	10 U	14 U	10 U	10 U	25 U	33 U	10 U	10 U	330 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (MiBK)	NA	10 U	10 U	10 U	10 U	110 U	110 U	10 U	22 U	10 U	14 U	10 U	10 U	25 U	33 U	10 U	10 U	330 U	10 U	10 U	10 U	10 U	10 U
Acetone*	50	10 U	2.6 J	10 U	10 UJ	110 UJ	110 U	10 U	22 U	10 U	14 U	10 U	10 U	25 U	33 U	10 U	10 U	330 U	10 UJ	10 UJ	10 UJ	10 U	10 UJ
Benzene	1	10	1 U	10	10	11 U	11 U	10	2.2 U	1 U	1.4 U	10	10	2.5 U	3.3 U	10	1 U	33 U	10	10	10	10	10
Bromodichloromethane*	50	10	1 U	1 U	10	11 U	11 U	10	2.2 U	10	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	10	10	10	10	10
Bromoform*	50	10	10	10	10)	11 UJ	11 U	1 U	2.2 U	10	1.4 U	10	10	2.5 U	3.3 U	10	10	33 U	1 ()	1 UJ	1 UJ	10	1 UJ
Bromomethane	5	1 U	1 U	10	1 UJ	11 UJ	11 U	1 U	2.2 U	1 U	1.4 U	10	10	2.5 U	3.3 U	10	1 U	33 U	1 UJ	1 UJ	1 UJ	10	1 UJ
Carbon disulfide	NA	10	1 U	10	1 U	11 U	11 U	10	2.2 U	10	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	10	1 U	1 U	10	10
Carbon tetrachloride	5	1 UJ	1 UJ	1 U	1 U	11 U	11 U	1 UJ	2.2 UJ	10	1.4 U	1 UJ	1 U	2.5 UJ	3.3 UJ	1 UJ	1 UJ	33 U	10	10	10	10	10
Chlorobenzene	5	10	1 U	10	10	11 U	11 U	10	2.2 U	1 U	1.4 U	10	10	2.5 U	3.3 U	10	1 U	33 U	10	10	10	1 U	10
Chloroethane	5	1 U	10	1 UJ	1 UJ	11 UJ	11 UJ	1 U	2.2 U	1 UJ	1.3 UJ	10	1 UJ	2.5 U	3.3 U	1 U	10	33 UJ	1 UJ	1 UJ	1 UJ	1 UJ	101
Chloroform	7	0.2 J	10	3.1	11	2.1 J	11 U	1 U	2.2 U	10	1.4 U	1 U	1.3	2.5 U	3.3 U	0.293	10	33 U	0.39 J	18	7	10	10
Chloromethane	NA	10	10	1 UJ	10	11 U	11 UJ	10	2.2 U	1 UJ	1.4 UJ	10	1 UJ	2.5 U	3.3 U	10	1 U	33 UJ	10	10	10	1 UJ	10
cis-1,2-Dichloroethene	5	10	1 U	10	10	11 U	4.51	0.21 j	3.8	10	1.4 U	10	10	0.59 J	3.3 U	1 U	1 U	33 U	10	1 U	10	10	10
cis-1,3-Dichloropropene**	0.4	10	10	1 U	10	11 U	11 U	10	2.2 U	10	1.4 U	10	10	2.5 U	3.3 U	10	10	33 U	1 U	10	10	1 Մ	10
Ethylbenzene	5	1 U	10	10	10	11 U	11 U	10	2.2 U	1 U	1.4 U	10	10	2.5 U	3.3 U	10	10	33 U	1 U	1 U	10	10	10
Methylene chloride	5	10	1 U	10	1 U	11 U	11 U	1 U	2.2 U	1 U	1.4 U	10	10	2.5 U	3.3 U	10	10	33 U	10	1 U	1 U	10	10
Styrene	5	10	10	10	1 U	11 U	11 U	1 U	2.2 U	10	1.4 U	1 U	1 U	2.5 U	3.3 U	10	10	33 U	10	10	10	10	10
Tetrachloroethene	5	1.2	6.1	6.7	3.3	320	320	0.321	1.23	1.1	1.4 U	0.82 J	23	87	120	2.1	10	870	7.2	10	8.6	40	10
Toluene	5	10	10	10	0.44 J	11 U	11 U	10	2.2 U	1 U	1.4 U	10	1 U	2.5 U	3.3 U	10	10	33 U	10	10	10	10	10
trans-1,2-Dichloroethene	5	10	10	10	1 U	11 U	11 U	10	2.2 U	10	1.4 U	1 U	1 U	2.5 U	3.3 U	10	10	33 U	10	10	10	10	1 U
trans-1,3-Dichloropropene**	0.4	10	10	10	1 U	11 U	11 U	10	2.2 U	10	1.4 U	1 U	10	2.5 U	3.3 U	10	1 U	33 U	10	10	10	10	10
Trichloroethene	5	8.5	10	0.51 J	10	11 U	11 U	1.1	39	10	1.4 U	3.2	0.781	2.5 U	3.3 U	10	1 U	33 U	10	10	1 U	0.48 J	10
Vinyl chloride	2	10	1 U	10	10	11 U	11 U	10	2.2 U	10	1.4 U	10	10	2.5 U	3.3 U	10	10	33 U	1 U	10	10	10	10
Xylenes (total)	NA	2 U	2 U	2 U	2 U	22 U	22 U	2 U	4.4 U	2 U	2.9 U	2 U	2 U	5 U	6.7 U	2 U	2 U	67 U	2 U	2 U	2 U	2 U	2 U

^{*} Guidance Value

NA= not applicable
--=Not Analyzed

^{**}Sum of these compounds can not exceed 0.4 ug/L.

	I	T								Sample ID and	Analytical F	esult (ug/L	1								
Chemical of Potential Concern	NYSDEC GA	MW-501	MW-511	MW-52D	MW-535	MW-55S	MW-P110-355	MW-P110-440	MW-P114-170R	MW-P114-290	PW-02-01	PW-02-02	PW-02-03	PW-02-04	PW-02-05	PW-02-06	PW-02-07	PW-03-01	PW-03-02	PW-03-03	PW-03-04
	Standard (ug/L)	03/31/10	04/01/10	04/05/10	04/05/10	04/07/10	04/12/10	04/13/10	04/08/10	04/09/10	04/15/10	04/15/10	04/16/10	05/03/10	05/03/10	05/04/10	05/05/10	04/16/10	04/13/10	04/14/10	04/13/10
1,1,1,2-Tetrachioroethane	5	1 U	10	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	1 U	10	10	10	1 U	1 U	10	10	1 U	10	1 U
1,1,1-Trichloroethane	5	0.33 J	1 U	2.5 U	25 U	10	4.2 ;	40 U	14 U	8.8	1 U	1.3	4.5	0.23 J	1 U	1 U	10	0.64 J	2.8	5.7	0.41 J
1,1,2,2-Tetrachloroethane	5	1 U	10	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	1 U	1 U	1 U	10	10	1 U	10	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	10	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	1 U	1 U	1 U	10	10	10	10	10	10	10
1,1-Dichloroethane	5	1 U	1 U	2.5 U	25 U	1 U	10 U	40 U	51	20	10	0.69 J	2	10	10	1 U	10	0.33 J	2.2	2.3	1 U
1,1-Dichloroethene	5	0.34 J	1 U	2.5 U	25 U	10	7.61	40 U	2.6 J	14	10	0.28 J	0.81 J	1 U	10	10	1 U	10	0.52 J	1.1	10
1,2-Dichlorobenzene	3	10	1 U	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	R
1,2-Dichloroethane	0.6	10	10	2.5 U	25 U	10	10 U	40 U	5.1	1.7 U	10	1 U	10	1 U	10	1 U	10	10	10	10	10
1,2-Dichloropropane	1	10	1 U	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	10	10	10	10	10	1 U	1 U	10	1 U	1 U
1,3-Dichlorobenzene	3	1 U	10	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	1 U	1 U	1 U	1 U	1 U	10	1 U	10	1 U	1 U	R
1,4-Dichlorobenzene	3	1 U	10	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	10	10	10	10	10	1 U	10	10	10	R
1,4-Dioxane (Method 8260)	NA	R	R	R	R	R	R	R		R	R	R	R	R	R	R	R	R	R	R	R
1,4-Dioxane (Method 8270)	NA						14	2.1	5.1	9.8	1 U	0.44)	2.1	U 80.0	10	10	0.34 J	10	0.1 J	0.12 J	0.07 J
2-Butanone	50	10 U	10 U	25 U	250 U	10 U	100 U	400 U	140 U	17 U	10 UJ	10 U	10 UJ	R	R	R	R	10 U	10 U	10 U	10 U
2-Hexanone*	50	10 U	10 U	25 U	250 U	10 U	100 U	400 U	140 U	17 U	10 U	10 U	10 U	5 UJ	5 UJ	5 UJ	5 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	NA NA	10 U	10 U	25 U	250 U	10 U	100 U	400 U	140 U	17 U	10 U	10 U	10 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U
Acetone*	50	10 UJ	10 U	25 U	250 U	10 U	100 U	400 U	140 U	17 U	10 U	10 U	10 U	2 U	2.0	2 U	2 U	10 U	10 U	10 U	10 U
Benzene	1	10	1 U	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	1 U	1 U	1 U	1 U	0.091 J	0.11 J	10	1 U	1 U	0.41
Bromodichloromethane*	50	10	10	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	1 U	10	10	1 U	1 U	10	10	1 U	10	10
Bromoform*	50	1 UJ	10	2.5 U	25 U	10	10 UJ	40 UJ	14 UJ	1.7 UJ	10	1 UJ	1 U	10	10	1 U	10	1 03	1 03	1 UJ	1 UJ
Bromomethane	5	1 01	1 U	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	1 U	10	1 U	2 UJ	2 UJ	2 UJ	2 U	1 UJ	1 U	1 U	10
Carbon disulfide	NA NA	10	10	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	10	1 U	1 U	1 UJ	1 UJ	1 UJ	10	1 UJ	10	10	10
Carbon tetrachloride	5	10	10	2.5 UJ	25 UJ	1 UJ	4.1 J	40 U	14 U	1.7 U	10	10	10	1 U	10	1 U	0.21 J	10	10	10	10
Chlorobenzene	5	10	1 U	2.5 U	25 U	1 U	10 U	40 U	14 U	0.34 J	10	10	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	R
Chloroethane	5	1 UJ	1 UJ	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	1 U	10	1 U	2 U	2 U	2 U	2 U	1 UJ	10	10	1 U
Chloroform	7	10	10	2.5 U	25 U	19	10 U	40 U	14 U	1.7 U	1 U	1 U	10	10	1 U	1 U	1 U	10	10	1 U	1 U
Chloromethane	NA NA	10	1 UJ	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	1 U	1 U	10	0.2 J	2 U	2 U	2 U	10	10	10	10
cis-1,2-Dichloroethene	5	10	10	2.5 U	25 U	1 U	19	40 U	72	14	10	1 U	10	10	10	10	0.91 J	10	10	1 U	10
cis-1,3-Dichloropropene**	0.4	10	1 U	2.5 U	25 U	1 U	10 UJ	40 UJ	14 U	1.7 U	1 U	1 UJ	1 U	10	1 U	10	10	1 U	1 ()	1 UJ	1 UJ
Ethylbenzene	5	10	10	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	10	10	1 U	10	10	1 U	0.12 /	10	10	10	R
Methylene chloride	5	10	1 U	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	10	1 U	1 U	10	1 U	1 U	10	1 U	10	1 U
Styrene	5	10	10	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	1 U	1 U	10	1 U	1 U	1 U	1 U	10	1 U	10	R
Tetrachloroethene	5	10	1.3	93	870	10	140	1200	14	6.4	1 U	1 U	1 U	1 U	10	0.93 J	86	1 U	10	10	1 U
Toluene	5	0.26 J	10	0.571	25 U	10	10 U	40 U	14 U	1.7 U	0.59 J	1 U	1 U	1 U	0.098 J	0.32 J	0.57 J	10	10	1 U	2.4 J
trans-1,2-Dichloroethene	5	1 U	10	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	10	1 U	1 U	1 U	1 U	10	10	10	10	10	1 U
trans-1,3-Dichloropropene**	0.4	10	1 U	2.5 U	25 U	1 U	10 U	40 U	14 U	1.7 U	1 U	1 U	1 U	1 U	10	10	1 U	10	1 U	1 U	1 U
Trichloroethene	5	0.48 J	10	2.5 U	25 U	1 U	300	16 J	430	44	10	1 U	10	10	10	10	2.1	1 U	1 U	10	10
Vinyl chloride	2	10	1 U	2.5 U	25 U	10	10 U	40 U	14 U	1.7 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U
Xylenes (total)	NA NA	2 U	2 U	5 U	50 U	2 U	20 U	80 U	29 U	3.3 U	2 U	2 U	2 U	1 U	10	0.271	0.66 J	2 U	2 U	2 U	0.78 J

^{*} Guidance Value

NA= not applicable

^{**}Sum of these compounds can not exceed 0.4 ug/L.

^{--≃}Not Analyzed

											Sample	ID and Anal	ytical Res	ult (ug/L)									
Chemical of Potential Concern	NYSDEC GA	PW-03-05	PW-03-06	PW-03-07	PW-04-01	PW-04-02	PW-04-03	PW-04-04	PW-04-05	PW-04-06	PW-04-07	PW-05-01	PW-05-02	PW-05-03	PW-05-04	PW-05-05	PW-05-06	PW-05-07	PW-06-02	PW-06-03	PW-06-04	PW-06-05	PW-06-06
	Standard (ug/L)			04/14/10																			
1,1,1,2-Tetrachloroethane	5	1 U	10	10	10	10	1 U	10	10	10	10	1 U	10	10	10	10	10	1 U	10	1 U	1 U	10	1 U
1,1,1-Trichloroethane	5	1 U	10	10	0.66 J	0.13 J	1 U	1.0	1 U	1 U	0.31 J	1 U	1 U	1 U	1 U	1 U	10	10	4.3	6.4	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	10	10	10	10	1 U	10	10	1 U	10	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	10	10	10	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	10	10	10	1 U	10	10
1,1-Dichloroethane	5	1 U	10	10	0.22 J	1 U	10	1 U	10	1 U	10	10	1 U	1 U	1 U	1 U	10	1 U	3	3.8	1 U	1 U	1 U
1,1-Dichloroethene	5	10	10	10	10	10	10	10	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.1	4.1	10	1 U	10
1,2-Dichlorobenzene	3	1 U	10	10	10	10	1 U	1 U	1 U	1 U	10	10	1 U	1 U	10	10	10	10	10	1 U	1 U	10	1 U
1,2-Dichloroethane	0.6	1 U	10	1 U	10	10	10	1 U	1 U	10	10	10	1 U	1 U	1 U	10	10	1 U	1 U	10	10	10	1 U
1,2-Dichloropropane	1	10	10	10	10	1 U	10	1 U	10	1 U	10	10	1 U	10	1 U	1 U	10	10	10	1 U	1 U	1 U	10
1,3-Dichlorobenzene	3	1 U	1 U	10	1 U	10	1 U	1 U	10	1 U	10	1 U	1 U	1 U	1 U	10	10	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	10	1 U	1 U	10	1 U	1 U	1 U	10	1 U	10	10	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	10	1 U
1,4-Dioxane (Method 8260)	NA NA	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1,4-Dioxane (Method 8270)	NA NA	1.1 U	1 U	0.32 J	4.4	1.5	0.32 J	0.03 J	10	10	2	10	0.16 J	0.06 J	0.05 J	0.12 J	1 U	10	0.39 J	7.2 j	0.5 UJ	0.5 UJ	0.12 J
2-Butanone	50	10 U	10 U	10 U	R	R	R	R	R	R	R	R	1.9 J	R	R	R	R	R	10 U				
2-Hexanone*	50	10 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	3.2 J	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (MiBK)	NA NA	10 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U
Acetone*	50	10 U	10 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	7.8 U	2 U	2 U	2 U	2 U	2 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	10	1 U	1 U	1 U	10	1 U	1 U	10	1 U	1 U	10	1 U	1 U	1 U	0.078]	0.33 J	1 U	10	10	10	1 U
Bromodichloromethane*	50	1 U	10	10	1 U	10	1 U	1 U	10	10	10	1 U	1 U	1 U	10	10	10	10	1 U	10	10	10	10
Bromoform*	50	1 UJ	1 UJ	1 UJ	1 U	10	1 U	1 U	10	1 U	10	1 U	1 UJ										
Bromomethane	5	1 U	1 UJ	10	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 UJ	2 U	2 U	2 U	2 U	2 UJ	2 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	NA NA	1 U	1 UJ	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	0.36 J	1 U	10	1 U	1 U	1 U	1 U
Carbon tetrachloride	5	1 U	10	1 U	1 U	10	1 U	1 U	1 U	1 U	10	10	10	1 U	1 U	10	10	10	1 U	1 U	10	10	10
Chlorobenzene	5	1 U	10	1 U	1 U	10	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	10	10	1 U	10	10	10	10	1 U	1 U
Chloroethane	5	1 U	1 UJ	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U	1 U	10	10	1 U
Chloroform	7	10	10	10	1 U	10	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	10	10	10	1 U	10	1 U	10
Chloromethane	NA NA	10	10	10	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U	10	1 U	10	10
cis-1,2-Dichloroethene	5	1 U	10	2.7	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	10	10	10	1 U	1 U	10	10	10
cis-1,3-Dichloropropene**	0.4	1 UJ	10	1 UJ	10	10	10	1 U	1 U	10	1 U	10	10	10	10	1 U	1 U	1 U	10	10	1 U	1 U	10
Ethylbenzene	5	1 U	10	10	1 U	10	10	10	10	1 U	10	10	1 U	1 U	1 U	10	1 U	0.1 J	1 U	10	10	1 U	10
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	10	1 U	1 U	10	10	10	1 U
Styrene	5	10	10	1 U	1 U	10	1 U	1 U	1 U	10	1 U	10	10	1 U	1 U	1 U	10	10	1 U	10	1 U	10	10
Tetrachloroethene	5	0.22 J	0.24 J	3.6	1 U	1 U	1 U	1 U	10	2	0.76 J	10	0.12 J	1 U	1 U	6.51	0.5 J	371	0.2 J	10	1.8	1.5	4.8
Taluene	5	1 U	1 U	0.57 J	1 U	1 U	0.3 J	1 U	1 U	0.33 J	0.16 J	10	10	1 U	0.12 J	0.38 J	0.27 J	1.4	10	10	0.29 J	0.26 J	0.41 J
trans-1,2-Dichloroethene	5	1 U	10	1 U	1 U	10	10	1 U	1 U	10	10	1 U	10	1 ປ	1 U	1 U	1 U	10	10	10	10	10	10
trans-1,3-Dichloropropene**	0.4	1 U	10	1 U	1 U	1 U	10	1 U	10	1 U	1 U	10	1 U	1 U	1 U	1 U	10	1 U	1 UJ				
Trichloroethene	5	1 U	1 U	1 U	10	10	1 U	1 U	1 U	10	10	1 U	10	10	1 U	1 U	1 U	0.35 /	1 U	0.84 J	10	10	10
Vinyl chloride	2	10	10	10	1 U	10	1 U	1 U	1 U	10	1 U	1 U	10	10	1 U	1 U	1 U	10	10	1 U	10	10	10
Xylenes (total)	NA NA	2 U	2 U	0.65 J	10	10	0.51	1 U	1 U	0.2 J	10	10	1 U	1 U	1 U	0.45 J	0.19 J	0.46 J	2 U	2 U	2 U	2 U	0.38 J

^{*} Guidance Value

^{**}Sum of these compounds can not exceed 0.4 ug/L.

NA= not applicable

⁻⁻⁼Not Analyzed

	NYSDEC GA	T								Sample ID and	Analytical Re	sult (ug/L)									
Chemical of Potential Concern	Standard (ug/L)			PW-07-02	PW-07-03	PW-07-04	PW-07-05	PW-07-06	PW-07-07	S-1-325	5-1-450	W-01-120	W-01-75	W-02-70	W-03-112	W-03-72	W-05-78	W-06-79	W-08-71	W-10-120	W-10-71
	Standard (dg/t/	05/22/10	05/12/10	05/10/10	05/10/10	05/11/10	05/12/10	05/13/10	05/11/10	05/04/10	05/04/10	04/19/10	04/19/10	04/20/10	04/19/10	04/19/10	04/20/10	04/20/10	04/19/10	04/20/10	04/20/10
1,1,1,2-Tetrachloroethane	5	2.5 U	1 U	10	10	10	10	10	10	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	10	10	1.4 U	1 U	2 U
1,1,1-Trichloroethane	5	2.5 ∪	2.3	1 U	0.21 J	1 U	1 U	10	1 U	0.81	0.38 J	2.5 U	10 U	1 U	3.3 U	1.7 U	10	10	1.4 U	1 U	2 U
1,1,2,2-Tetrachloroethane	5	2.5 U	1 U	10	10	1 U	1 U	1 U	1 U	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	10	1 U	1.4 U	1 U	2 U
1,1,2-Trichloroethane	1	2.5 U	1 U	1 U	10	1 U	10	10	1 U	1 U	10	2.5 U	10 U	1 U	3.3 U	1.7 U	10	10	1.4 U	10	2 U
1,1-Dichloroethane	5	2.5 U	2.4	1 U	0.11 J	1 U	0.18 J	10	1 U	0.27 J	10	2.5 U	10 U	10	3.3 U	1.7 U	1 U	1 U	1.4 U	1 U	2 U
1,1-Dichloroethene	5	2.5 U	4.1	10	10	10	1 U	1 U	10	0.83 J	0.42 J	2.5 U	10 U	1 U	3.3 U	1.7 U	1 U	1 U	1.4 U	10	2 U
1,2-Dichlorobenzene	3	2.5 U	1 U	10	10	1 U	1 U	10	10	10	10	2.5 U	320	1 U	3.3 U	1.7 U	10	10	1.4 U	1 U	2 U
1,2-Dichloroethane	0.6	2.5 U	10	1 U	10	1 U	1 U	10	1 U	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	1 U	10	1.4 U	10	2 U
1,2-Dichloropropane	1	2.5 U	10	10	10	1 U	1 U	10	10	1 U	1 U	2.5 U	10 U	1 U	3.3 U	1.7 U	10	1 U	1.4 U	10	2 U
1,3-Dichlorobenzene	3	2.5 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	1 U	2.5 U	10 U	1 U	3.3 U	1.7 U	1 U	1 U	1.4 U	10	2 U
1,4-Dichiorobenzene	3	2.5 U	1 U	10	10	10	1 U	10	10	1 U	10	2.5 U	7.6 J	10	3.3 U	1.70	10	10	1.4 U	10	2 U
1,4-Dioxane (Method 8260)	NA.	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1,4-Dioxane (Method 8270)	NA	0.22 J	2.4	0.1 J	0.13 /	1.1 U	10	10	1.1 U	1.1	0.61	1 U	10	10	10	10	10	1.1	10	10	10
2-Butanone	50	25 U	1,13	R	R	R	R	R	R	R	R	25 U	100 U	10 U	33 U	17 U	10 U	R	14 U	10 U	20 U
2-Hexanone*	50	25 U	0.71 J	5 U	5 U	SU	5 U	5 U	5 U	5 UJ	5 UJ	25 U	100 U	10 U	33 U	17 U	10 U	5 U	14 U	10 U	20 U
4-Methyl-2-pentanone (MiBK)	NA NA	25 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	SU	25 U	100 U	10 U	33 U	17 U	10 U	5 U	14 U	10 U	20 U
Acetone*	50	25 U	21	2 U	2 U	2 UJ	2 U	3.9 U	2 U	2 U	2 U	25 U	100 U	10 U	33 U	17 U	10 U	2 U	14 U	10 U	20 U
Benzene	1	2.5 U	1 U	10	10	0.24 J	0.1 J	0.11 J	1 U	0.05 J	10	2.5 U	10 U	10	3.3 U	1.7 U	10	1 U	1.4 U	10	2 U
Bromodichloromethane*	50	2.5 U	10	10	10	10	1 U	10	10	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	10	10	1.4 U	10	2 U
Bromoform*	50	1 UJ	10	10	10	10	1 U	10	10	1 U	10	2.5 UJ	10 UJ	1 UJ	3.3 UJ	1.7 UJ	1 UJ	1 U	1.4 UJ	1 UJ	2 UJ
Bromomethane	5	2.5 U	2 UJ	2 U	2 U	2 U	2 UJ	2 UJ	2 U	2 UJ	2 UJ	2.5 UJ	10 UJ	1 UJ	3.3 UJ	1.7 UJ	1.01	2 UJ	1.4 UJ	1 UJ	2 UJ
Carbon disulfide	NA	2.5 U	1 U	10	10	1 U	10	10	1 U	1 UJ	1 UJ	2.5 UJ	10 UJ	1 UJ	3.3 UJ	1.7 UJ	1 UJ	1 UJ	1.4 UJ	1 UJ	2 UJ
Carbon tetrachloride	5	2.5 U	1 U	10	10	10	10	10	10	2.5	3	2.5 U	10 U	10	3.3 U	1.7 U	10	1 U	1.4 U	10	2 U
Chlorobenzene	5	2.5 U	1 U	1 U	10	1 U	10	10	10	1 U	10	2.5 U	25	10	3.3 U	1.7 U	10	10	1.4 U	10	2 U
Chloroethane	5	2.5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.5 UJ	10 UJ	1 ()	3.3 UJ	1.7 UJ	101	2 UJ	1.4 UJ	10/	2 UJ
Chloroform	7	2.5 U	10	10	10	10	2 U	10	10	1 U	1 U	2.5 U	10 U	1 U	3.3 U	1.7 U	10	10	1.4 U	10	2 U
Chloromethane	NA NA	2.5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.5 U	10 U	10	3.3 U	1.7 U	10	2 U	1.4 U	10	2 U
cis-1,2-Dichloroethene	5	2.5 U	0.31 J	1 U	10	1 U	0.22 J	10	10	0.91 J	12	73	100	1.2	3.3 U	2.7	0.31 J	10	1.4 U	10	2 U
cis-1,3-Dichloropropene**	0.4	2.5 U	1 U	1 U	10	10	10	10	1 U	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	10	10	1.4 U	1.0	2 U
Ethylbenzene	5	2.5 U	10	10	10	0.11 J	1 U	10	10	1 U	10	2.5 U	61	10	3.3 U	1.7 U	10	1 U	1.4 U	10	2 U
Methylene chloride	5	2.5 U	10	10	10	10	1 U	1.0	10	1 U	10	2.5 U	10 U	1 U	3.3 U	1.7 U	10	10	1.4 U	10	2 U
Styrene	5	2.5 U	10	1 U	10	10	10	10	10	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	10	1 U	1.4 U	1 U	2 U
Tetrachloroethene	5	75	0.88 J	10	10	10	1.1	0.37 J	0.53 J	6.1	24	4.5	100	27	84	52	8.7	0.13 J	41	29	30
Toluene	5	0.43 J	0.07 J	0.15 /	10	0.86 J	0.371	0.381	0.34 J	0.21 J	1 U	2.5 U	10 U	1 U	3.3 U	1.7 U	10	1 U	1.4 U	1 U	2 U
trans-1,2-Dichloroethene	5	2.5 U	1 U	1 U	10	10	10	1 U	10	1 U	10	0.46 J	10 U	10	3.3 U	1.7 U	10	10	1.4 U	10	2 U
trans-1,3-Dichloropropene**	0.4	2.5 UJ	1 U	10	10	10	1 U	10	10	1 U	10	2.5 U	10 U	10	3.3 U	1.7 U	10	1 U	1.4 U	10	2 U
Trichloroethene	5	1.11	2.2	10	10	10	4.6	10	0.23 J	22	92	10	240	4.6	4.4	3.2	27	10	1.4 U	10	62
Vinyl chloride	2	2.5 U	10	10	10	10	10	10	10	1 U	10	2.5 U	9.41	1 U	3.3 U	1.7 U	1 υ	1 UJ	1.4 U	10	2 U
Xylenes (total)	NA.	5 U	1 U	0.12 J	1.0	0.53 J	0.19 J	0.26 J	1 U	0.12 J	10	5.0	130	2 U	6.7 U	3.3 U	2 U	10	2.9 U	2 U	4 U

^{*} Guidance Value

^{**}Sum of these compounds can not exceed 0.4 ug/L.

NA= not applicable

⁻⁻⁼Not Analyzed

	AMERICA CA	I									Sample	ID and Ana	lytical Res	ult (ug/L)									
Chemical of Potential Concern	NYSDEC GA	W-11-70	W-12-120	W-12-70	W-14-150	W-16-148	W-19-110	W-19-150	W-20-120	W-20-160	W-22-95	W-23-110	W-24-260	W-25-150	W-25-188	W-26-270	W-27-240	W-27-285	W-30-285	W-31-95	W-32-110	W-36-390	W-36-448
	Standard (ug/L)	04/21/10	04/21/10	04/21/10	04/19/10	04/22/10	04/22/10	04/22/10	04/23/10	04/23/10	04/21/10	04/22/10	04/27/10	04/27/10	04/27/10	04/27/10	04/28/10	04/28/10	04/28/10	04/21/10	04/20/10	04/29/10	04/29/10
1,1,1,2-Tetrachloroethane	5	10	1 U	10	1 U	10	10	10	10	1 U	1 U	2 U	1 U	1 U	5 U	1 U	10	10	10	10	5.7 U	10	1 UJ
1,1,1-Trichloroethane	5	10	1 U	10	2.1	10	10	1 U	0.42 J	10	10	2 U	1 U	1 U	5 U	1 U	0.34 J	1	10	1 U	5.7 U	100 U	0.69 J
1,1,2,2-Tetrachioroethane	5	10	10	10	1 U	1 U	10	1 U	10	1 U	1 U	2 U	1 U	1 U	5 U	10	10	1 U	10	10	5.7 U	10	1 UJ
1,1,2-Trichloroethane	1	10	10	10	10	10	10	0.24 J	10	10	10	2 U	10	10	5 U	10	1 U	0.46 J	10	10	5.7 U	100 U	1 UI
1,1-Dichloroethane	5	10	10	10	1 U	10	10	1 U	3.3	1.2	10	2 U	1.6	10	5 U	10	0.61	1.3	10	10	5.7 U	100 U	0.54 J
1,1-Dichloroethene	5	1 U	1 U	10	1.8	1 U	10	0.32 J	0.61 J	2.2	1 U	2 U	6.7	1 U	1.1 J	1 U	3.7	3.6	10	10	5.7 U	100 U	1.43
1,2-Dichlorobenzene	3	10	10	10	10	1 U	10	1 U	1.6	110 J	2.2	2 U	2.1	20	761	10	4.6	:60	1 U	1 U	5.7 U	10	1 UJ
1,2-Dichloroethane	0.6	10	10	10	1 U	1 U	10	10	10	1 U	10	2 U	1 U	10	5 U	10	1 U	1 U	10	10	5.7 U	10	1 UJ
1,2-Dichloropropane	1	10	1 U	10	10	10	10	1 U	10	10	10	2 U	10	10	5 U	10	10	10	10	1 U	5.7 U	100 U	1 Uj
1,3-Dichlorobenzene	3	10	10	1 U	10	10	1 U	1 U	10	10	1 U	2 U	10	0.28 J	0.81 J	1 U	10	1 U	10	1 U	5.7 U	100 U	1 UJ
1,4-Dichlorobenzene	3	1 U	10	10	10	1 U	10	1 U	10	1.5	1 U	2 U	10	0.89 J	3.6 J	10	10	1 U	1 U	10	5.7 U	100 U	1 UJ
1,4-Dioxane (Method 8260)	NA NA	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	23 J	R
1,4-Dioxane (Method 8270)	NA NA	0.81 J	10	1 U	0.72 J	1 U	1 U	10	0.791	0.44 J	1 UJ	1 U	5	0.41 /	0.65 J	0.19 J	2.2	1.4	0.14 J	10	12	28 J	2.4 J
2-Butanone	50	R	R	R	10 U	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	57 U	500 U	R
2-Hexanone*	50	5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	SU	5 U	25 U	5 U	5 U	5 U	5 UJ	5 U	57 U	5 UJ	51
4-Methyl-2-pentanone (MIBK)	NA NA	5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U	25 U	5 U	S U	5 U	5 U	SU	57 U	5 U	5 UJ
Acetone*	50	2 U	2 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	40	2 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	57 U	6.3 U	2 UJ
Benzene	1	10	10	10	1 U	10	10	1 U	1 U	10	1 U	2 U	0.13 J	10	5 U	10	10	0.054 J	1 U	1 U	5.7 U	100 U	0.047 J
Bromodichloromethane*	50	10	10	10	10	10	1 U	10	10	1 U	10	2 U	1 U	1 U	5 U	1 U	10	1 U	1 U	10	5.7 U	10	1 UJ
Bromoform*	50	10	10	1 U	1 UJ	10	10	10	1 U	1 U	10	2.0	1 U	10	5 U	10	10	10	1 U	10	5.7 UJ	10	1 UJ
Bromomethane	5	2 UJ	2 UJ	2 UJ	1 UJ	2 UJ	2 UJ	2 UJ	2 U	2 U	2 UJ	4 U	2 U	2 U	10 U	2 U	2 U	2 U	2 U	2 UJ	5.7 UJ	2 U	2 UJ
Carbon disulfide	NA	1 UJ	1 UJ	1 0)	1 UJ	1 UJ	1 UJ	1 UJ	10	1 U	11	2 0	10	1 U	5 U	1 0)	1 UJ	1 UJ	1 UJ	1 UJ	5.7 UJ	100 U	1 UJ
Carbon tetrachloride	5	10	10	1 U	1 U	10	10	10	10	10	1 U	2 U	1 U	10	5 U	10	0.088 J	10	10	1 U	5.7 U	65	5.1 J
Chlorobenzene	5	10	1 U	10	1 U	10	10	10	1 U	10	1 U	2 U	1 U	0.261	4.61	10	1 U	10	1 U	10	5.7 U	100 U	1 UJ
Chloroethane	5	2 UJ	2 UJ	2 UJ	1 UJ	2 UJ	2 UJ	2 UJ	2 U	2 U	2 UJ	4 U	2 U	2 U	10 U	2 U	0.44 J	2 U	2 U	2 UJ	5.7 UJ	2 U	2 UJ
Chlorofarm	7	10	10	1 U	1 U	4.4 U	10	15 U	10	1 U	10	2 U	1 U	1 U	5 U	10	10	1 U	1 U	1 U	5.7 U	8.1 U	1 UJ
Chloromethane	NA	2 U	2 U	2 U	10	2 U	2 U	2 U	2 U	2 U	2 U	4.0	2 U	2 U	10 U	2 U	2 U	2 U	0.28 U	2 U	5.7 U	2 U	2 UJ
cis-1,2-Dichloroethene	5	10	10	10	0.371	2.1	10	39	8	24	4.7	0.73 J	43	27	33	0.44 J	57	750	10	10	5.7 U	11003	66
cis-1,3-Dichloropropene**	0.4	1 U	10	10	1 U	1 U	10	10	10	1 U	1 U	2 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	5.7 U	10	1 Ui
Ethylbenzene	5	10	10	1 U	10	10	10	10	10	10	1 U	2 U	10	10	5 U	10	10	10	1 U	10	5.7 U	10	1 UJ
Methylene chloride	5	10	10	1 U	10	1 U	1 U	10	10	10	1 U	2 U	10	1 U	5 U	1 U	10	1 U	1 U	1 U	5.7 U	10	1 UJ
Styrene	5	10	1 U	1 U	10	1 U	10	1 U	1 U	10	1 U	2 U	10	10	5 U	10	10	10	1 U	10	5.7 U	1 U	1 UJ
Tetrachloroethene	5	0.44)	0.77 J	0.14 J	4.5	210	15	400	521	1101	160	2 J	9.6	71	17 1	10	23	660	0.63 /	0.56 J	170	110	59
Toluene	5	10	10	1 U	10	1 U	10	10	1 U	1 U	10	2 U	0.143	1 U	5 U	1 U	10	10	1 U	1 U	5.7 U	10	1 UJ
trans-1,2-Dichloroethene	5	10	1 U	1 U	1 U	1 U	10	0.24 J	10	0.56 J	1 U	2 U	0.24 J	1 U	5 U	10	0.63 J	9.9	10	10	5.7 U	100 U	0.19 J
trans-1,3-Dichloropropene**	0.4	10	10	1 U	10	10	10	1 U	10	1 U	1 U	2 U	1 U	10	5 U	10	10	1 U	10	1 U	5.7 U	10	1 UJ
Trichloroethene	5	10	10	10	7	4.3	1 U	44	25	40	29	2.9	401	32	16	10	88	280 D	10	10	3.2 J	19001	230
Vinyl chloride	2	1 UJ	1 UJ	1 UJ	1 U	1 UJ	1 UJ	1 UJ	0.191	15	1 UJ	2 U	10	0.12 J	14	10	13	84	10	1 UJ	5.7 U	100 U	1 UJ
Xylenes (total)	NA	10	10	10	2 U	10	1 U	10	10	10	1 U	2 U	10	10	5 U	10	10	0.84 J	1 U	1 U	11 U	1 U	1 UJ

^{*} Guidance Value

NA= not applicable

-≖Not Analyzed

^{**}Sum of these compounds can not exceed 0.4 ug/L.

	NYSDEC GA	Sample ID and A	Analytical Result (ug/L)
Chemical of Potential Concern	111111111111	W-37-325	W-37-385
	Standard (ug/L)	04/29/10	04/29/10
1,1,1,2-Tetrachioroethane	5	10	10
1,1,1-Trichloroethane	5	2.5	57
1,1,2,2-Tetrachioroethane	5	1 U	1 U
1,1,2-Trichloroethane	1	0.34 J	1.3
1,1-Dichloroethane	5	1.3	3.2
1,1-Dichloroethene	5	31	110
1,2-Dichlorobenzene	3	10	1 U
1,2-Dichloroethane	0.6	10	1 U
1,2-Dichloropropane	1	10	0.18 J
1,3-Dichlorobenzene	3	1.0	1 U
1,4-Dichlorobenzene	3	10	1 U
1,4-Dioxane (Method 8260)	NA NA	32 J	60 J
1,4-Dioxane (Method 8270)	NA NA	29	49
2-Butanone	50	R	R
2-Hexanone*	50	5 U	5 U
4-Methyl-2-pentanone (MIBK)	NA	5 U	5 U
Acetone*	50	2 U	2 U
Benzene	1	0.1 J	0.062 J
Bromodichloromethane*	50	10	1 U
Bromoform*	50	10	10
Bromomethane	5	2 U	2 U
Carbon disulfide	NA NA	1 UJ	1 UJ
Carbon tetrachloride	5	97	24
Chlorobenzene	5	10	1 U
Chloroethane	5	2 U	2 U
Chloroform	7	110	81
Chloromethane	NA NA	2 U	2 U
cis-1,2-Dichloroethene	5	16	5.8
cis-1,3-Dichloropropene**	0.4	10	10
Ethylbenzene	5	10	1 U
Methylene chloride	5	10	1 U
Styrene	5	10	10
Tetrachloroethene	5	110	80
Toluene	5	10	10
trans-1,2-Dichloroethene	5	10	1 U
trans-1,3-Dichloropropene**	0.4	10	10
Trichloroethene	5	1000 J	380
Vinyl chloride	2	10	10
Xylenes (total)	NA.	1 U	10

^{*} Guidance Value

^{**}Sum of these compounds can not exceed 0.4 ug/L.

NA= not applicable

⁻⁻⁼Not Analyzed

Client: GTEOSI
Location: Hicksville, NY

Project ID: Groundwater Profiling

SEI #: 03-1402

 Date Sampled:
 10/15 - 10/22/2002

 Date Analyzed:
 10/15 - 10/23/2002

PROFILE ID = P-01

						VOC	DA	TA, ug/L						INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
78.7	65.79	1	U	1	U	1	U	7		1	U	88	0.84	1.18	0.05	183	0.26
88.7	55.80	1	U	1	U	1	U	1	U	1	U	94	0.55	0.56	0.05	321	0.03
98.7	45.78	1	U	1	U	1	U	1	U	1	U	89	0,20	0.22	0.04	275	0.02
108,2	36.31	1	U	1	U	1	U	1	U	1	U	92	NS	NS	NS	NS	NS
117.6	26.93	1	U	1	U	1	U	1	U	1	U	92	0.24	0.80	0.07	221	0.02
127.6	16.90	1	U	1	U	1	U	1	U	1	U	82	0.33	0.27	0.11	40	ND
137.6	6.88	1	U	1	U	1	U	1	U	1	U	93	0.24	0.43	0.09	89	ND
147.1	-2.62	1	U	1	U	1	U	1	U	1	U	101	0.08	0.19	0.05	48	ND
157,3	-12.76	1	U	1	U	1	U	1	U	1	U	99	0.27	0.87	0.22	97	0.15
167.2	-22.73	1	U	1	U	1	U	1	U	1	U	104	0.09	0.23	0.18	363	0.09
177.2	-32.71	1	U	1	U	1	U	1	U	1	U	87	0.02	0.09	0.05	227	0.04
187.2	-42.71	1	U	1	U	1	U	1	U	1	U	88	0.04	0.03	0.06	27	ND
197.6	-53.11	1	U	1	U	1	U	1	U	1	U	82	0.47	1.99	0.40	42	ND
207.3	-62.78	1	U	1	U	1	U	1	U	1	U	84	0.12	1.16	0.16	38	ND
217.1	-72.62	1	U	1	U	1	U	1	U	1	U	82	0.02	0.22	0.06	35	ND
229.1	-84.65	1	U	1	U	1	U	1	U	1	U	79	0.14	0.50	0.21	42	ND
237.5	-93.01	1	U	1	U	1	U	1	U	1	U	79	0.23	0.56	0.31	43	ND
245.0	-100.54	1	U	1	U	1	U	1	U	1	U	82	0.21	0.90	0.42	50	0.43
257.6	-113.08	NS		NS	П	NS	Т	NS		NS			NS	NS	NS	NS	NS
266,5	-122.01	1	U	1	U	1	U	1	U	1	U	79	0.39	14	14*	24	ND
276,5	-132.00	1	U	1	U	1	U	1	U	1	U	76	0.36	2.68	5.0*	26	ND
286.5	-142.01	1	U	1	U	1	U	1	U	1	U	81	0.23	0.95	0.33*	30	1.31
301.2	-156.67	1	U	1	U	1	U	1	U	1	U	92	0.41	1.53	0.53*	34	0.12

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Client: GTEOSI

Location: Hicksville, NY

Project ID: Groundwater Profiling

SEI #: 03-1402

<u>Date Sampled:</u> 10/15-10/20/02, 11/21-12/05/02 <u>Date Analyzed:</u> 10/15-10/20/02, 11/21-12/05/02

PROFILE ID = P-02

						VOC	DA	TA, ug/L						INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsi)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
78.2	66.08	1	П	1	U	1	U	1	U	43	П	99	0.28	0.73	ND	ND	ND
89.3	55.00	1	U	1	U	1	U	1	U	89		102	0.43	0.29	0.12	ND	0.29
98.8	45.46	1	U	1	U	1	U	1	U	1	U	92	0.10	0.23	0.12	145	0.05
109.4	34.88	1	U	1	U	1	U	1	U	1	U	85	NS	NS	NS	NS	NS
118.6	25.67	1	U	1	U	1	U	1	U	1	U	91	0.02	0.14	0.06	84	0.02
129.0	15.23	1	U	1	U	1	U	1	U	1	U	94	0.04	0.07	0.06	163	0.22
139.9	4.40	1	U	1	U	1	U	1	U	1	U	89	0.03	ND	0.06	66	ND
149.5	-5.25	1	U	1	U	1	U	1	U	1	U	107	0.04	0.20	0.10	148	0.03
159.9	-15.64	1	U	1	U	1	U	1	U	1	U	96	0.06	0.12	0.12	126	ND
170.3	-26.07	1	U	1	U	1	U	1	U	1	U	96	0.04	0.14	0.10	48	0.01
181.5	-37.20	1	U	1	U	1	U	1	U	1	U	113	0.13	0.20	0.35	162	0.03
190.0	-45.75	1	U	1	U	1	U	1	U	1	U	90	0.10	0.31	0.31	48	ND
200.0	-55.74	1	U	1	U	1	U	1	U	1	U	92	0.12	0.43	0.44	48	ND
207.9	-63.62	1	U	1	U	1	U	1	U	1	U	98	0.39	0.71	0.12	47	ND
217.8	-73.59	1	U	1	U	1	U	1	U	1	U	98	0.60	0.95	0.30	63	0.12
228.0	-83.78	1	U	1	U	1	U	1	U	1	U	99	0.40	0.55	0.07	132	0.01
238.0	-93.79	1	U	1	U	1	U	1	U	1	U	101	0.73	2.75	0.44	261	0.22
248.1	-103.80	1	U	1	U	1	U	1	U	1	U	102	0.56	0.85	0.24	280	0.13
258.2	-113.97	1	U	1	U	1	U	1	U	1	U	95	0.13	0.26	0.22	325	0.03
266.6	-122.30	1	U	1	U	1	U	1	U	1	U	92	0.30	0.39	0.49	38	0.06
277.1	-132.85	1	U	1	U	1	U	1	U	1	U	92	0.07	0.25	0.20	24	0.04
287.1	-142.85	1	U	1	U	1	U	1	U	1	U	94	0.10	0.23	0.27	21	0.07
297.1	-152.85	1	U	1	U	1	U	1	U	1	U	95	0.32	0.71	0.71	23	0.13
302.1	-157.80	1	U	1	U	1	U	1	U	1	U	97	ND	0.39	1.05	27	ND

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Client:

GTEOSI

Location:

Hicksville, NY

Project ID:

Groundwater Profiling

SEI#:

03-1402

Date Sampled:

11/18-11/21/02

Date Analyzed: 11/18-11/21/02

PROFILE ID = P-03

						VOC	DA.	ΓA, ug/L						INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
87.4	55.8	1	U	1	U	1	U	1	П	31	П	105	1.13	1.5	0.26	14	0.06
97.4	45.8	1	U	1	U	1	U	2		21	П	103	0.38	0.62	0.30	13	0.02
107.4	35.8	1	U	1	U	1		3		11		100	0.81	1.86	1.44	45	0.15
117.4	25.8	1	U	1	U	1	U	1	U	5		104	0.95	2.14	0.66	58	0.15
127.4	15.8	1	U	1	U	1	U	1	U	1	U	103	0.31	2.24	0.07	452	0.18
137.4	5.8	1	U	1	U	1	U	1	U	1	С	103	0.52	2.54	0.58	461	0.33
147.4	-4.2	1	U	1	U	1	U	1	U	1	U	98	0.78	0.87	0.12	359	0.01
157.4	-14.2	1	U	1	U	1	U	1	U	1	U	92	0.66	0.79	0.07	354	ND
167.4	-24.2	1	U	1	U	1	U	1	U	1	U	96	0.46	0.71	0.09	390	0.02
177.4	-34.2	1	U	1	U	1	U	1	U	1	U	100	0.52	0.59	0.05	499	ND
187.4	-44.2	1	U	1	U	1	U	1	U	1	U	89	0.14	0.23	0.07	393	ND
197.4	-54.2	1	U	1	U	1	U	1	U	1	U	103	0.28	0.36	0.03	494	ND
207.4	-64.2	1	U	1	U	1	U	1	U	1	U	94	0.38	0.48	0.05	384	ND
217.4	-74.2	1	U	1	U	1	U	1	U	1	U	98	0.64	1.09	0.35	287	0.13
227.4	-84.2	1	U	1	U	1	U	1	U		U	101	0.59	1.28	0.29	275	0.09
237.4	-94.2	1	U	1	U	1	U	1	U	1	U	102	0.50	0.66	0.06	328	0.01
247.4	-104.2	1	U	1	U	1	U	1	U	1	U	95	0.21	0.74	0.21	480	0.09
257.4	-114.2	1	U	1	U	1	U	1	U	1	U	93	0.40	0.92	0.30	710	0.14
267.4	-124.2	1	U	1	U	1	U	1	U	1	U	98	0,51	0.66	0.07	810	ND
277.4	-134.2	1	U	1	U	1	U	1	U	1	U	97	0.40	0.62	0.07	1002	ND
287.4	-144.2	1	U	1	U	1	U	1	U	1	U	107	0.10	0.28	0.06	650	ND
297.4	-154.2	1	U	1	U	1	U	1	U	1	U	110	0.34	0.50	0.23	692	ND
302,4	-159.2	1	U	1	lu	1	U	1	U	1	U	104	0.90	1.29	0.60	608	0.15

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

GTEOSI Client:

Location: Project ID: Hicksville, NY

Groundwater Profiling

SEI#: 03-1402 10/28-11/02/02 Date Sampled: Date Analyzed: 10/28-11/02/02

PROFILE ID = P-04

		·····				VOC	DA	TA, ug/L		***************************************				INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
77.5	64.79	1	U	1	U	1	U	7		32		97	0.14	0.31	0.02	10	ND
87.4	54.84	1	U	1	U	1	U	4		39		82	0.15	0.27	0.16	15	ND
97.2	45.07	1	U	1	U	1	U	2	Γ	67		81	0.19	0.37	0.04	31	ND
106.74 ¹	35.50	20	U	20	U	20	U	20	U	20	U	80	0.61	1.26	0.55	41	ND
117.3	24.99	1	U	1	U	3		46		2		87	0.58	0.71	0.01	46	ND
127.4	14.83	20	U	20	U	22	П	270		20	U	84	0.44	0.75	0.11	76	0.02
137.5	4.77	20	U	20	U	21		150		20	U	86	0.53	0.65	0.07	79	0.01
147.6 ¹	-5.36	20	U	20	U	20	U	20	U	20	U	86	1.03	1.12	0.05	71	ND
157.6	-15.39	1	U	1	U	1		12		1		91	0.36	0.65	0.12	102	0.02
167.6	-25.31	1	U	1	U	2		18		1		78	0.39	0.66	0.22	99	0.06
177.5	-35.26	1	U	1	U	1	U	1	U	1	U	97	0.15	0.26	0.07	108	ND
187.5	-45.26	1	U	1	U	1	U	1	U	1	C	92	0.19	0.33	0.08	70	0.03
197.7	-55.41	1	U	1	U	1	U	1	U	1	U	95	0.37	0.45	0.05	136	0.01
207.7	-65.49	1	U	1	U	1	U	1	U		U	95	0.30	0.42	0.05	97	0.01
217.7	-75.41	1	U	1	U	1	U	1	U		U	105	0.34	0.43	0.09	192	0.05
227.8	-85.51	1	U	1	U	1	U	1	U		U	97	0.60	0.79	0.11	222	0.06
237.8	-95.51	1	U	1	U	1	U	1	U		U	98	0.59	0.66	0.02	315	0.02
247.8	-105.51	1	U	1	U	1	U	1	U	1	U	90	0.37	0.70	0.30	369	0.09
257.9	-115.61	1	U	1	U	1	U	1	U	1	U	93	0.29	0.97	0.33	333	0.23
267.9	-125.61	1	С	11	U	1	U	1	U		U	94	0.48	0.60	0.09	468	0.02
277.9	-135.61	1	U	1	U	1	U	1	U	1	U	95	0.46	0.66	0.20	453	0.04

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client: GTEOSI
Location: Hicksville, NY

Project ID: Groundwater Profiling

 SEI #:
 03-1402

 Date Sampled:
 10/28-11/02/02

 Date Analyzed:
 10/28-11/02/02

PROFILE ID = P-05

						VOC	DA	ΓA, ug/L						INORG	ANIC DATA	mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
77.5	66.79	20	U	20	U	20	U	21		1,400	П	87	0,18	0.25	0.04	ND	ND
87.5	56.79	20	U	20	U	20	U	20	U	340		86	0.41	0.80	0.29	12	ND
97.5	46.79	1	U	1	U	1		7	П	49		82	0,13	0.27	0.09	ND	0.03
107.5	36.79	20	U	20	U	20	U	20	U	140		83	0.33	0.54	0.14	ND	0,03
117.3	27.04	1	U	1	U	1	U	1	U	55	П	78	0.27	0.48	0.11	129	0.03
127.5	16.79	1	U	1	U	1	U	1	U	11		85	0.27	0.48	0.04	173	0.01
137.5	6.79	1	U	1	U	1	U	1		22		84	0.17	0.27	0.05	185	0.01
147.5	-3.21	1	U	1	U	1	U	3	П	17	П	85	0.57	0.72	0.12	214	0.03
157.5	-13.21	1	U	1	U	1	U	1	U	3		88	0.54	0.71	0.12	230	0.03
167.5	-23.21	1	U	1	U	1	U	1		9	П	85	0.84	0.97	0,11	314	0.05
177.5	-33.21	1	U	1	U	2		7		26	П	71	0.65	0.77	0.06	332	0.03
187.5	-43.21	1	U	1	U	1	U	2		13	П	88	0.59	0.73	0.08	350	0.04
197.4	-53.11	1	U	1	U	1	U	1	U	7		74	0.61	0.69	0.09	422	0.01
207.4	-63.11	1	U	1	U	1	U	1	U	2		75	0.31	0.39	0.04	431	0.02
217.4	-73,11	1	U	1	U	1	U	1	U	1	U	82	0.01	0.12	0.05	445	0,01
227.4	-83.11	1	U	1	U	1	U	1	U	1	U	96	0.31	0.41	0.03	485	0.02
237.4	-93.11	1	U	1	U	1	U	1	U	1	U	96	0.59	0.79	0.08	541	0.07
247.4	-103.11	1	U	1	U	1	U	1	U	1	U	92	0,69	1.13	0.13	360	0.09
262.5	-118.21	1	U	1	U	1	U	1	U	1	U	96	1.05	4.25	1.56	715	0.37
272.4	-128.11	1	U	1	U	1	U	1		10		94	0.55	3.14	0.70	850	0.18
282.4	-138.11	1	U	1	U	1	U	1	U	110	П	99	0.47	1.20	0.50	650	0.13
292.4	-148.11	1	U	1	U	1	U	3	T	15	\Box	99	1.22	1.55	0.26	1040	0.08
299.0	-154.73	1	U	1	U	1	U	1	U	8	П	93	1.14	2.70	0.78	810	0.28

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

GTEOSI

Location:

Hicksville, NY

Project ID:

Groundwater Profiling

SEI#:

03-1402

Date Sampled:

11/13-11/18/02

Date Analyzed:

11/13-11/18/02

PROFILE ID = P-06

						voc	DA	TA, ug/L						INORG	ANIC DATA	۸, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Tota l Chlorine
82.8	60.39	20	U	20	U	20	U	28	T	5,600	Г	103	1.89	1.96	0.07	9.00	0.15
92.8	50.39	20	U	20	U	20	U	20	U	1,800	Γ	106	1.09	1.24	0.09	7.75	0.27
102,8	40.39	20	U	20	U	20	U	20	U	1,100	Π	95	0.50	0.6	0.06	33.12	0.12
112.8	30.39	1	U	1	U	1	U	1	U	14		108	0.10	0.28	0.07	99	0.07
122.8	20.39	1	U	1	U	1	U	1	U	4	T	104	0.31	0.66	0.12	137	0.01
132.8	10.39	1	U	1	U	1	U	1	U	4		99	0.13	0.35	0.09	231	0.00
142.8	0.39	1	U	1	U	1	U	1	U	4		97	0.34	0.58	0.07	300	0.12
152.8	-9.61	1	U	1	U	1	U	1	U	6	T	106	0.01	0.35	0.10	143	0.02
162,8	-19.61	1	U	1	U	1	U	1	U	6	T	102	0.06	0.07	0.06	67	ND
172.8	-29.61	1	U	1	U	1	U	1	U	12	T	106	0.07	0.17	0.13	119	0.04
182.8	-39.61	1	U	1	U	1	U	1	U	4	Π	103	0.03	0.05	0.08	362	0.01
192.8	-49.61	1	U	1	U	1	U	1	U	3	T	105	0.1	0.21	0.11	301	0.02
202.8	-59.61	1	U	1	U	1	U	1	U	2	T	103	0.2	0.30	0.04	348	0.02
212.8	-69.61	1	U	1	U	1	U	1	U	1	1	90	0.28	0.35	0.05	410	0.13
222.8	-79.61	1	U	1	U	1	U	1	U	2	T	93	0.24	0.27	0.05	498	ND
232.8	-89.61	1	U	1	U	1	U	1	U	3	T	105	0,4	0.52	0.06	582	0.01
242.4	-99.21	1	U	1	U	1	U	1	U	1	U	90	1.33	1.46	0.04	458	0.01
252.4	-109.21	1	U	1	U	1	U	1	U	1	U	97	0.46	0.46	0.02	705	ND
262.4	-119.21	1	U	1	U	1	U	1	U	1	U	98	0.03	0.16	0.07	746	0.02
272.4	-129.21	1	U	1	U	1	U	1	U	5	T	103	0.01	0.18	0.09	851	ND
282.4	-139.21	1	U	1	U	1	U	1	U	10	T	103	0.90	0.98	0.15	836	0.01
291.5	-148.31	1	U	1	U	1	U	1	\top	5	T	102	0.07	0.24	0.17	871	0.03

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb

U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Client: GTEOSI

Location: Hicksville, NY

Project ID: Groundwater Profiling

SEI #: 03-1402

<u>Date Sampled:</u> 11/19-12/04/02 <u>Date Analyzed:</u> 11/19-12/04/02

PROFILE ID = P-07

						VOC	DA	A, ug/L						INORG	ANIC DATA	mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene)	cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
82.4	62.13	1	U	1	U	1	U	1	U	1	U	95	2.11	2.61	0.34	144	0.09
92.4	52.13	1	U	1	U	1	U	1	U	1	U	99	1.57	2.11	0.27	132	0.11
102.4	42.13	1	U	1	U	1	U	1	U	1	U	90	0.66	1.17	0.29	160	0.07
112.4	32.13	1	U	1	U	1	u	1	U	1	U	96	2.36	3.08	0.52	234	0.10
122.1	22.43	1	U	1	U	1	U	1	U	1	U	108	0.92	1.53	0.61	338	0.11
132.4	12.13	1	U	1	U	1	U	1	U	1	U	99	0.95	2.23	0.74	119	0.24
142.4	2.13	1	U	1	U	1	U	2		1	U	105	1.47	2.05	0.42	109	0.15
152.4	-7.87	1	U	1	U	1	U	1	77	1	U	100	0.99	1.15	0.17	148	0.02
162,4	-17.87	1	U	1	U	1	U	1	U	1	U	102	2.1	2.70	0.43	163	0.2
172.4	-27.87	1	U	1	U	1	U	1	U	1	U	94	1.24	1,66	0.35	128	0.06
182.4	-37.87	1	U	1	U	1	U	1	U	1	U	100	0.40	0.99	0.35	167	0.13
192.4	-47.87	1	U	1	U	1	U	1	U	1	U	104	1.13	1.71	0.42	199	0.15
202.4	-57.87	1	U	1	U	1	U	1	U	1	U	103	1.78	2.46	0.51	204	0,16
212.4	-67.87	1	U	1	U	1	U	1	U	1	U	100	1.03	1.22	1.34	133	0.55
222.4	-77.87	1	U	1	U	1	U	1	U	1	U	91	0.26	0.41	0.12	96	ND
232.4	-87.87	1	U	1	U	1	U	1	U	1	U	97	1.27	1.46	0.11	73	0.03
242.4	-97.87	1	U	1	U	1	U	1	U	1	U	98	1.06	1.10	0.06	90	ND
252.8	-108.27	1	U	1	U	1	U	1	U	1	U	92	0.81	1.06	0.16	75	0.04
262.8	-118.27	1	U	1	lu	1	U	1	U	1	U	105	0.76	1.01	0.22	57	0.08
272.8	-128.27	1	U	1	U	1	U	2		1	U	103	1.18	1.31	0.11	48	0.02
282.8	-138.27	1	U	1	U	1	U	1	U	1	U	104	1.20	1.29	0.09	62	0.04
292.8	-148.27	1	U	1	U	1	U	5	T	1	П	101	1.27	1.77	0.21	32	0.12
301.0	-156.47	1	U	1	U	1	U	1	U	1	U	101	0.58	0.71	0.13	89	0.04

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client: GTEOSI
Location: Hicksville, NY

Project ID: Groundwater Profiling

 SEI #:
 03-1402

 Date Sampled:
 12/03-12/07/02

 Date Analyzed:
 12/03-12/07/02

PROFILE ID = P-08

		***************************************				VOC	DAT	A, ug/L			_			INORG	ANIC DATA	, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% S S	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
77.6	66.54	1	U	1	U	1	U	1	U	1	ŪΪ	103	0.65	0.96	0.09	4	0.01
87.6	56.54	1	U	1	U	1	U	1	U	1	U	101	0.73	1.65	0.27	12	0.20
97.6	46.54	1	U	1	U	1	U	1	U	1	U	101	3.27	3,38	0.26	167	0.07
107.6	36.54	1	U	1	U	1	U	3		1	U	103	1.58	1.80	0.12	95	0.04
117,6	26.54	1	U	1	U	1	U	1	U	1	U	100	1.00	1.28	0.13	87	0.07
127.6	16.54	1	U	1	U	1	U	5	\Box	1	T	109	1.19	1.46	0.19	65	0.06
137.6	6.54	1	U	1	U	1	U	3		1	U	102	1.53	1.64	0.11	74	0.03
147.6	-3.46	1	U	1	U	1	U	1	T	1	U	101	2.03	2.18	0.04	101	ND
157.6	-13.46	1	U	1	U	1	U	1		1	U	99	1.71	1.74	0.04	159	0.01
167.6	-23.46	1	U	1	U	1	U	1	П	1	U	98	0.54	0.76	0.07	202	0.01
177.6	-33.46	1	U	1	U	1	U	1	U	1	U	106	1.60	1.70	0.15	268	0.01
187,6	-43.46	1	U	1	U	1	U	1	U	1	U	102	1.97	2.34	0.25	148	0.06
197.6	-53.51	1	U	1	U	1	U	5		1	T	102	0.06	2.05	0.77	41	0.28
207.6	-63.46	1	U	1	U	1	U	5		2		103	1.10	1.37	0.15	62	0,06
217.6	-73.46	1	U	1	U	1	U	3		1	U	98	1.80	2.66	0.37	87	0.23
227.6	-83.46	1	U	1	U	1	U	9	П	2		111	0.79	0.95	0.05	43	ND
237.6	-93.46	1	U	1	U	1	U	8		2		111	1.06	1.30	0.07	31	0.01
247.6	-103.51	1	U	1	U	1	U	5	\Box	2		110	0.82	1.06	0.05	32	0.01
257.6	-113.46	1	U	1	U	1	U	4		1		98	0.65	0.72	0.03	59	ND
267.6	-123.46	1	U	1	U	1	U	2		1	U	107	0.81	0.96	0.02	101	0.01
277.6	-133.46	1	U	1	U	1	U	2	T	1	U	101	2.02	2.27	0.14	103	0.08
287.6	-143,46	1	U	1	U	1	U	1	U	1	U	91	0.46	0.50	0.04	27	0.02
297.6	-153.46	3		1	U	1	U	1	U	1	U	108	2.9	3.22	0.12	220	ND
302.6	-158.51	1	U	1	U	1	U	1	U	1	U	94	3.08	3.40	0.10	280	0.03

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client: GTEOSI

<u>Location:</u> Hicksville, NY
<u>Project ID:</u> Groundwater Profiling

SEI #: 03-1402

<u>Date Sampled:</u> 11/13-11/17/02 <u>Date Analyzed:</u> 11/13-11/17/02

PROFILE ID = P-09

						VOC	DA.	ΓA, ug/L						INORG	ANIC DATA	mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
82,6	58.96	1	U	1	U	1	U	1	U	12	٦	109	0.12	0.24	0.05	9.13	0
92.6	48.96	20	U	20	U	20	U	20	U	380		98	1.15	1.37	0.15	11.63	0.36
102.6	38.96	20	U	20	U	20	U	30	T	4,400		106	0.93	0.98	0.06	27.25	0.12
112,6	28.96	20	U	20	U	20	U	24	T	3,800		95	0.98	1.11	0.12	13	0.16
122,6	18.96	20	U	20	U	20	U	20	U	3,200		99	0.69	1.14	0.38	13	0.02
132.6	8.96	20	U	20	U	20	U	20	U	290		99	0.11	3.22	0.76	59	0.03
142,6	-1.04	1	U	1	U	1	U	1	U	6		103	0.00	0.21	0.09	87	ND
152.6	-11.04	1	U	1	U	1	U	1	U	4		95	0.02	0.11	0.09	87	0.00
162,6	-21.04	1	U	1	U	1	U	1	U	4		101	0.31	1.71	0.12	97	0.17
172.6	-31.04	1	U	1	U	1	U	1	U	5		103	0.11	0.44	0.33	83	0.04
182.6	-41.03	1	U	1	U	1	U	1	U	11		102	0.02	0.32	0.08	110	0.02
192.6	-51.04	1	U	1	U	1	U	1	U	12		107	0.06	0.35	0.14	123	0.06
202.6	-61.04	1	U	1	U	1	U	1	U	2		109	0.12	0.56	0.38	121	0.02
212.6	-71.04	1	U	1	U	1	U	1	U	2		103	0.09	0.41	0.55	141	0.12
222.6	-81.03	1	U	1	U	1	U	1	U	2		109	ND	0.05	0.04	214	ND
232.6	-91.03	1	U	1	U	1	U	1	U	2		98	0.08	0.28	0.13	300	0.04
242.6	-101.04	1	U	1	U	1	U	1	U	1		101	0.13	0.72	0.22	410	0.13
252.6	-111.03	1	U	1	U	1	U	1	U	8		89	0.30	0.42	0.06	502	ND
263.0	-121.38	1	U	1	U	1	U	1	U	4		97	0.03	0.15	0.05	337	ND
272.6	-131.03	1	U	1	U	1	U	1	U	3		98	NS	NS	NS	NS	NS

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Client: GTEOSI

Location: Hicksville, NY
Project ID: Groundwater Profiling

SEI #: 03-1402

<u>Date Sampled:</u> 11/03-11/05/02 <u>Date Analyzed:</u> 11/03-11/05/02

PROFILE ID = P-10

						voc	DA	ΓA, ug/L					INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene	% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
77.7	63.27	20	U	20	U	20	U	38		460	93	0.14	0.25	0.04	11	0.02
87.8	53.12	20	U	20	U	20	U	20	U	300	94	1.23	1.33	0.05	26	ND
97.9	43.02	20	U	20	U	20	U	21		360	94	0.40	0.73	0.12	65	0.06
108.0	32.97	20	U	20	U	20	U	24	T	380	93	0.16	0.39	0.18	17	0.05
118.1	22.87	20	U	20	U	20	U	23		660	93	0.46	0.58	0.13	66	0.03
128.0	12.97	20	U	20	U	20	U	20	Г	620	122	1.96	2.07	0.06	78	0.01
138.0	2.97	1	U	1	U	1	U	2		91	98	0.86	2.16	1.80	10	0.11
148.0	-7.03	20	U	20	U	20	U	20	U	270	94	0.22	8.75	0.30	10	0.23
158.0	-17.03	20	U	20	U	20	U	20	U	220	98	4.00	9.00	5.00	57	0.04
168.1	-27.13	1	U	1	U	1	U	1	U	2	104	1.18	1.89	0.55	149	0.08
178.1	-37.13	1	U	1	U	1	U	1	U	2	106	1	2.58	1.50	182	0.52
188.2	-47.23	1	U	1	U	1	U	1	U	4	98	0.34	0.60	0.28	209	0.06
198.2	-57.23	1	U	1	U	1	U	1	U	2	100	0.55	4.75	3.50	215	0.18
208.1	-67.18	1	U	1	U	1	U	1	U	1	104	0.42	1.49	0.36	253	0.28
218.1	-77.19	1	U	1	U	1	U	1	U	2	103	0.81	1.36	0.31	269	0.19
226.7	-85.73	1	U	1	U	1	U	1	U	1	108	0.23	0.33	0.06	347	ND
238.0	-97.08	1	U	1	U	1	U	1	U	1	112	0,54	0.87	0.11	430	0.01
247.8	-106.88	1	U	1	U	1	U	1	U	1	101	0.87	7.87	0.37	470	0.05
257.9	-116.98	1	U	1	U	1	U	1	U	3	100	3.18	20.25	2.50	653	ND
264.5	-123.58	1	U	1	U	1	U	1	U	8	114	1.28	1.81	0.37	535	ND

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb

U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client: GTEOSI
Location: Hicksville, NY

Project ID: Groundwater Profiling

 SEI #:
 03-1402

 Date Sampled:
 11/03-11/05/02

 Date Analyzed:
 11/03-11/05/02

PROFILE ID = P-11

						VOC	DA	TA, ug/L						INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
87.0	53.92	1	U	1	U	1	U	1	U	7	П	104	0.53	11.00	0.65	21	0.09
97.4	43.52	1	U	1	U	1	U	1	U	140		92	1.09	1.38	0.15	25	0.06
107.4	33.52	1	U	1	U	1	U	1	U	6		95	0.88	1.36	0.31	20	0.09
117.4	23.52	1	U	1	U	1	U	1	U	2		94	0.26	5.75	3.75	13	0.23
127.4	13,52	1	U	1	U	1	U	1	U	1		97	0.69	0.91	0.24	27	0.01
137.4	3.52	1	U	1	U	1	U	1	U	2		95	0.74	1.19	0.47	56	0.03
147.4	-6.48	1	U	1	U	1	U	1	U	2		105	0.09	0.38	0.07	62	0.02
157.4	-16.48	1	U	1	U	1		28	Τ	4		97	0.02	0.22	0.07	63	0.01
167.4	-26.48	20	U	20	U	36		380	T	20	U	100	0.58	1.14	0.40	67	0.07
177.4	-36.48	20	U	20	U	50	П	720		20	U	103	0.92	1,47	0.36	68	0.11
187.4	-46.48	20	C	20	U	20	U	210		20	U	1 0 2	0.69	3.03	0.75	73	0.18
197.4	-56.48	1	U	1	U	6		73	Г	5		101	0.46	2.01	0.96	75	0.18
207.4	-66.48	1	U	1	U	3		31	T	2	Τ	102	0.11	0.21	0.05	75	0,01
217.4	-76.51	1	U	1	U	1	U	2	7	1	U	105	0.31	0.82	0.19	89	0.06
227.4	-86.48	1	U	1	U	1	U	1	U	1	U	100	0.46	0.82	0.12	106	0.05
237.4	-96.48	1	U	1	U	1	U	1	U	1	U	107	0.57	1.50	0.35	88	0.06
247.2	-106.28	1	U	1	U	1	U	1	U	1	U	99	0.26	0.56	0.15	87	0.05
257.4	-116.51	1	U	1	U	1	U	1	U	1	U	100	0.17	0.30	0.08	115	ND
267.4	-126.48	1	U	1	U	1	U	1	U	1		102	0.039	2.75	0.08	159	ND
277.4	-136.48	1	U	1	U	1	U		U	4		108	0.47	0.82	0.21	369	0.06
281.1	-140.21	1	U	1	U	1	U	1	U	3		97	0.47	0.72	0.19	367	0.03

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client: **GTEOSI**

Location: Project ID: Hicksville, NY

Groundwater Profiling

SEI#: 03-1402 Date Sampled: 11/13-11/20/02 Date Analyzed: 11/13-11/20/02

PROFILE ID = P-12

						VOC	DA	TA, ug/L						INORG	ANIC DATA	, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
78,9	64.10	20	U	20	U	42	\Box	100		13,000		99	0.23	0.41	0.13	12	0.02
87.9	55.06	20	U	20	U	20	U	20	U	210		103	0.11	0.56	0.09	11	0.08
97.9	45.03	1	U	1	U	1	U	1	U	19		110	0.52	0.61	0.09	124	0,21
108.0	34.95	1	U	1	U	1	U	1	U	11		108	0.48	0.57	0.08	157	0.18
118.1	24.89	1	U	1	U	1	U	1	U	7		106	0.48	1.28	0.46	145	0.72
128.0	14.94	1	U	1	U	1	U	1	U	5		106	0.25	0.33	0.05	262	0.02
137.6	5.32	1	U	1	U	1	U	1	U	5		106	0.23	0.31	0.08	245	0.02
146.4	-3.41	1	U	1	U	1	U	1	U	5		105	0.17	1.01	0.41	145	0.04
157.8	-14.85	1	U	1	U	1	U	1	U	5		108	ND	0.07	ND	81	1.05
167.6	-24.63	1	U	1	U	1	U	1	U	4		108	0.06	0.55	0.63	133	0.02
180.3	-37.33	11		1	U	1	U	1	U	52	П	96	0.13	0.41	0.43	90	0.06
187.6	-44.68	9		1	U	1	U	1	U	100		101	1.76	2.60	0.75	154	0.03
197.8	-54.83	8		1	U	1	U	1	С	49		99	1.72	1.95	0.75	209	0.04
207.4	-64.45	1	U	1	U	1	U	1	U		U	109	0.21	0.43	0.07	212	ND
217.7	-74.75	1	U	1	U	1	U	1	U	1	U	98	0.32	0.74	0.14	304	ND
227.5	-84.50	1	U	1	U	1	U	1	U	1	U	94	0.46	0.63	0.012	227	0.03
237.5	-94.50	1	U	1	U	1	U	1	U	1	U	90	0.31	1.06	0.46	600	0.16
247.4	-104.43	1	U	1	U	1	U	1	U	1	U	92	0.03	0.15	0.07	180	ND
257.4	-114.43	1	U	1	U	. 1	U	1	U	1	U	104	2.01	3,88	0.63	466	1.74
267.5	-124.55	1	U	1	U	1	U	1	U	1	U	92	0.61	0.76	0.38	430	0.47
278.3	-135.35	1	U	1	U	1	U	1	U	19		109	0.14	0.38	0.47	669	0.02
287.4	-144.45	1	U	1	U	1	U	1	U	1	U	90	0.21	0.48	0.36	33	0.01
297.1	-154.15	1	U	1	U	1	U	1	U	5		102	0.13	0,55	0.31	707	0.02

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client:

GTEOSI

Location:

Hicksville, NY

Project ID:

Groundwater Profiling

SEI#:

03-1402

Date Sampled:

12/06-12/11/02

Date Analyzed: 12/06-12/11/02

PROFILE ID = P-13

						VOC	DA	ΓA, ug/L						INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Tota l Chlorine
76.6	63.67	20	U	20	U	20	U	20	U	650		101	0.86	1.13	0.16	32	0.02
86.6	53.67	20	U	20	U	20	U	20	U	250		105	1.23	2.08	0.48	43	0.08
96,6	43.67	20	U	20	U	20	U	20	U	1,200		101	1.96	2.83	0.72	63	0,15
106.6	33.67	20	U	20	U	20	U	20	U	580		101	0.69	1.42	0.48	82	0.08
116.6	23.67	20	U	20	U	20	U	20	U	270		99	2.28	3.55	NS	106	0.10
126.6	13.67	1	U	1	U	1	U	1	U	12		97	1.56	2.41	0.77	46	0.17
136.6	3.67	1	U	1	U	1	U	1	U	2		104	0.68	0,90	0.18	51	0.05
146.6	-6.33	1	U	1	U	1	U	1	U	3		102	0.49	0.71	0.24	111	0.05
156.6	-16.33	1	U	1	U	1	U	5		5		102	1.0	1.71	0.4	105	0.08
166.6	-26.33	1	U	1	U	1	U	14		6		102	0.04	0.20	0.12	93	ND
176.6	-36.33	1	U	1	U	1	U	15		3		107	0.26	0.51	0.23	90	0.04
186,6	-46.33	1	U	1	U	1	C	16		2		110	0.78	1.41	0.38	70	0.07
196,6	-56.33	1	U	1	U	1	U	13		4		105	0.49	0,95	0.42	14	0.1
206.6	-66.33	1	U	1	U	1		21	П	10		107	0.09	0.16	0.07	88	0.01
217.3	-77.03	1	U	1	U	3		74		5		97	0.02	0.10	0.00	82	ND
227.3	-87.03	6	C	6	U	20	П	290		19		99	0.14	0.26	0.04	110	0.01
237.3	-97.03	2	U	2	U	6		130	Τ	9		101	1.07	1.41	0.48	51	0.27
247.3	-107.03	1	U	1	U	1	U	3		2		94	0.63	0.63	5.25	120	0.03
260.7	-120.43	1	U	1	U	18	П	330		17		99					
267.3	-127.03	1	U	1	U	1	U	8	U	1	U	95					

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

ND = Value below detection limit.

[%]SS = Surrogate Recovery

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Mobile Laboratory Results Sheet

Client: GTEOSI Location: Hicksville

Location: Hicksville, NY
Project ID: Groundwater Profiling

<u>SEI #:</u> 03-1402

<u>Date Sampled:</u> 12/06-12/10/02 <u>Date Analyzed:</u> 12/06-12/10/02

PROFILE ID = P-14

						VOC	DA	TA, ug/L						INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft amsl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
77.8	62.64	2	U	2	U	9	П	57	Г	77		98	18	22	NS	21	0.11
85.8	54.64	2	U	2	U	16	П	19		150		99	21	21	0.50	24	0.15
95.2	45.29	1	U	1	U	2		8		31		100	18	22	1.20	13	0.20
105.3	35.21	1	U	1	U	1	U	2		10		109	14	15	1.80	6	0.1
115.1	25.32	1	U	1	U	25		2 3		12		100	11	13	0.80	10	ND
125.2	15.24	1	U	1	U	1	U	5		13		104	7.3	7.6	0.30	63	0.02
135.1	5.39	1	U	1	U	1	U	2	Γ	18		100	1.00	1.30	0.75	23	0.13
145.0	-4.58	1	U	1	U	1	U	1		6		103	0.92	1.04	0.13	55	0.02
155.1	-14.61	1	U	1	U	1	U	3	Г	3	П	103	0.78	1.41	0.38	70	0.07
165.3	-24.88	1	U	1	U	1	U	3		2		111	1.00	1.35	0.30	95	0.12
175.4	-34.89	1	U	1	U	1	U	3	Г	1	Π	108	0.88	1.31	0.27	106	0.05
185.5	-45.04	1	U	1	U	1	U	1		2		103	0.48	0.62	0.07	102	0.02
195.4	-54.96	1	U	1	U	1	U	1	U	1	U	95	0.83	1.42	0.43	85	0.14
204.7	-64.24	1	U	1	U	1	U	1	U	1	U	105	0.66	1.62	0.20	86	0.27
214.8	-74.34	1	U	1	U	1	U	1	U	1	U	98	0.69	1.30	0.19	86	0.14
224.9	-84.41	1	U	1	U	1	U	1	U	1	U	97	0.05	0.10	0.01	74	0.03
234.9	-94.48	1	U	1	U	1	U	2		9		106	0.50	0.89	0.11	230	0.08
244.8	-104.36	1	U	1	U	1	U	3	Г	20	T	96	0.84	1.50	0.16	470	0.14

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEI#: 03-1402 Date Sampled: 5/27 - 6/02/03 5/27 - 6/02/03 Date Analyzed:

6/02/03

Report Date:

HOLE ID = P15																
Depth	Vinyl Chloride		VOC DA									NORGANIC DATA, mg/L			COELUTING 1,1-DCE / Freon	
		Q t-Dichloroethene C	c-Dichloroethene	Q Tric	chloroethene	<u>Q</u> :	Tetrachloroethene	Q	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79.7	20	U 3 L	3	U	3	U		J	102	0.12	0,23	0,14	34	ND	3 U	Detect
89.7	4	U 4 L	34	J	26		1800	J	115	0,07	0.11	0.03	33	ND	4 U	4 U
99.7	20	U 20 L	120	J	230		18000	J	109	0.09	0.17	0,08	31	ND	20 U	20 U
109.7	20	U 20 U	180	J	280		15000	J	104	0.15	0,21	0.03	23	ND	20 U	20 U
119,7	20	U 20 U	20	U	67		2500		100	0.11	0.17	0.07	38	ND	20 U	20 U
129.7	2	U 2 L	2	U	2	U	120	П	98	ND	0,05	0,05	99	ND	2 U	2 U
139.7	1	U 1 L	1	U	1	U	14	Т	86	ND	0.08	0.07	129	0.03	1 U	1 U
149.7	1	U 1 U	1	U	1	U	22		107	ND	ND	0.03	119	0.03	1 U	10
159.7	1	U 1 L	1	U	1	U	11	П	100	ND	0.03	0.06	75	0.02	1 U	1 U
169,7	1	U 1 L	1	U	1	U	14		88	ND	ND	0.07	89	ND	10	10
179.7	1	U 1 L	1	U	1	U	10	T	87	ND	0.04	0.07	102	0.02	1 U	1 U
189.7	1	U 1 U	1	U	1	U	10	7	89	ND	0.08	0.07	49	0.02	1 U	1 U
199,7	1	U 1 L	1	U	1	U	9	T	93	ND	0.04	0,08	48	0.03	10	1 U
208.0	1	U 1 L	1	U	1	Ü	13		90	0.24	1,03	0.95	54	0,15	1 U	1 U
218.0	1	U 1 (1	U	1	U	1	U	85	ND	0.08	0,05	59	0.02	1 U	1 U
228.0	1	U 1 L	1	U	1	U	1	U	90	0.03	0.42	0,13	170	0.03	1 U	10
240.0	1	U 1 L	1 1	U	1	U	5		92	0.05	0,40	0.17	248	0.06	1 U	10
290.1	20	U 20 U	20	U	20	U	190		103	0.24	0.53	0.34	376	0.13	20 U	20 U
300.1	1	U 1 U	1	U	1	U	19		104	0.36	0.88	0.60	293	0.27	1 U	1 U
310.1	1	U 1 L	1 1	U	1	U	2		90	0.33	1,09	0.35	128	0.29	1 U	1 U
329.1	1	U 1 L	1 1	U	1	U		U	96	ND	0.05	0.04	210	ND	1 U	1 U
339.1	1		1	U	1	U	1	U	88	ND	ND	0.02	135	ND	1 U	10

	1																				·····		
1												VOC DATA, ug/L											1
Depth	Freon 123A	Q Freon 123	Q	1.1-Dichloroethane	Q 1	.1.1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q.	1.3-Dichlorobenzene C	1,4-Dichlorobenzene	9 1.2	2-Dichlorobenzen	eΩ	%SS
79.7	1	U 7	J	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1 (1	U	1	U	102
89.7	20	U 20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20 U	20	U	20	U	115
99.7	20	U 20	U	20	U	20	U		U	20	U	20	U	40	U	20	U	20 U	20	U	20	U	109
109.7	20	U 20	U	20	U	20	U		U	20	U	20	U	40	U	20	U	20 U	20	U	20	Ü	104
119,7	20	U 20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20 L		U	20	U	100
129.7	2	U 2	U	2	U	2	U		U	2	U	2	U	2	U	2	U	2 (U	2	U	98
139.7	1 1	U 1	U	1	U	11	U	1	U	1	U	1	U	2	U	1	U	1 (1	U	1	U	86
149,7	1 1	U 1	U	1	U	1	U	1	Ü	1	U	1	Ü	2	U	11	U	1 (U	1	U	107
159.7	1	U 1	U	1	U	11	U		U	11	U	1	U	2	U	1	U	1 L	1 1	U	1	U	100
169.7	1 1	U 1	U	1	U	1 1	U		U	1	비	11	U	2	U	11	U	1 (1 1	U	1	U	88
179,7	1 1	U 1	U	11	U	1	U	1	U	1	U	1	U	2	U	1	U	1 (1 1	U	1	U	87
189.7	1 1	U 1	U	1	U	1 .	U		U	1	U	11	U	2	U	1	U	1	1 1	U	1	U	89
199.7	1 1	U 1	U	11	U	11	U	1	U	1	U	1	U	11	U	1	U	1 (11	U	1	U	93
208.0	1 1	U 1	10	11	U	11	U	1	U	1	U.	1	U	1	In	1	Tu	1 1	1 1	U	11	U	90
218.0	1 1	U 1	U	1	U	11	U	11	U	1	U	1	U	1	In	11	Tu	1 (1	U	1	U	85
228.0	1 1	U 1	10	1	1U	11	U		U	1	U	1	U	11	U	11	ĮU	1 1	11	In	1	1U	90
240.0	1 1	U 1	101	11	Iu1	20	9		U	11	U	1	U	1	U	11	U	1 1	1	101	1	U	92
290.1	20	U 20	U	20	U	20	U	20	U	20	븨	20	U	20	In	20	IU	20 L	J 20	In	20	IU	103
300.1	1 1	U 1	- 10	1	IU	11	U	1	U	1	U	1	U	1	U	1	IU	1 (11	IU.	1	U	104
310.1	1 1	U 1	10	1	U	11	<u>U</u>		U	1	U	1	U	11	U	1	IU	1 1	1 1	IUI.	1	U	90
329.1	1 1	U 1	101	1	IU	11	U	11	U	1	灲	11	U	11	U	11	JU	1 (1 1	U	1	U	96
339.1	1 1	U] 1	U	1	U	11	U	1	U	1	U	1	U	1	101	1	10	1 1	J 1	U	1	101	88

Mobile Laboratory Results Sheet

Client: GTEOSI
Location: Hicksville, NY

Project ID: Groundwater Profiling

 SEI #:
 03-1402

 Date Sampled:
 12/08-12/11/02

 Date Analyzed:
 11/08-12/11/02

PROFILE ID = P-16

						voc	DA	TA, ug/L					***************************************	INORG	ANIC DATA	A, mg/L	
Depth	Elevation (ft msl)	Vinyl Chloride		trans- Dichloroethene		cis- Dichloroethene		Trichloroethene		Tetrachloroethene		% SS	Fe ⁺²	Total Fe	Ammonia	Chloride	Total Chlorine
81.0	57.67	40	U	60	U	150	П	200		22,000		97	0.49	0.95	0.42	14	0.1
91.0	47.67	40	U		U	70		100		19,000		97	1.30	1.42	0.11	9	0.04
101.0	37.67	2	U	2	U	2	U	2	U	110		100	0.22	0.86	0.14	15	0.01
111.0	27.67	1	U	1	U	1	U	1	U	30		104	0.31	0.41	0.16	7	0.02
121.0	17.67	1	U	1	U	1	U	1	U	26		104	0.39	0.46	0.08	77	0.04
131.0	7.67	1	U	1	U	1	U	1	U	20		106	0.30	0.42	0.06	76	0.02
141.0	-2.33	1	U	1	U	1	U	1	U	17		104	0.37	0.53	0.06	87	0.06
151.0	-12.33	1	U	1	U	1	U	1	U	16		102	0.11	0.24	0.11	69	0.01
161.0	-22.33	1	U	1	U	1	U	1		13		100	0.33	0.76	0.40	61	0.16
171.0	-32.33	1	U	1	U	1	U	2	П	10		101	0.27	0.35	0.11	54	0.01
181.0	-42.33	1	U	1	U	1	U	1	U	11		96	0.19	0.41	0.16	65	0.04
191.0	-52.33	1	U	1	U	1	U	1		8		95	0.29	0.35	0.05	60	ND
201.0	-62.33	1	U	1	U	1	U	1	U	7		90	0.28	0.40	0.08	39	0.02
211.0	-72.33	1	U	1	U	1	U	1	U	8		101	0.13	0.21	0.08	53	0.02
221.0	-82.33	1	U	1	U	1	U	1	U	7	Г	106	0.34	2.04	0.41	60	0.11
231.0	-92.33	1	U	1	U	1	U	1	U	8	Γ	100	0.05	0.23	0.08	78	0.01
241.0	-102.33	1	U	1	U	1	U	1	U	5	U						
251.0	-112.33	1	U	1	U	1	U	1	U	12	U						

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb U = Undetected below the specified reporting limit.

%SS = Surrogate Recovery

ND = Value below detection limit.

^{*} Ammonia test results elevated by high degree of sample turbitity.

¹ Sample did not have enough volume to run at 1 ppb detection limit

Client: Location: Hicksville, NY Project ID: Groundwater Profiling

03-1402 SEI#: Date Sampled: 4/24 - 4/27/03 Date Analyzed: 4/24 - 5/09/03 Report Date: 5/09/03

HOLE ID = P17																			
					VOC D	ATA,	ug/L								INORGANIC DATA, mg/L				COMPOUNDS
																	1	1,1-DCE / Freon	
Depth	Vinyl Chloride	Q t-Di	chloroethene	Q c-	-Dichloroethene	Q	Trichloroethene	QI	etrachloroethen	Q Q	% SS	Fe ⁺²		Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1.2-DCA / Benzene
73.3	1	U	1	U	1	U	1	U	1	U	82	0.09		0.50	0.29	12	0.04	NA .	NA NA
82.3	1	U	1	U	1	U	1	U	1	U	99	0,11		0.19	0.07	18	ND	NA	NA NA
92.3	1	U	1	U	1	U	1	U	1	U	83	0.06		0.18	0.08	26	0.03	NA NA	NA
102.3	1	U	1	U	1	U	1	U	1	U	109	ND		0.38	0.09	83	0.02	10	1 U
112.3	1	U	1	U	1	U	1	U	1	U	84	ND		0.12	0.03	62	ND	NA.	NA
122.3	1	U	1	u	1	U	1	U	1	U	84	0.02		0.10	0,07	73	ND	NA NA	NA NA
132.2	1	U	1	U	1	U	1	U	1	U	76	ND		0.07	0.03	72	ND	NA NA	NA NA
142.2	1	UJ	1	UJ	1	ÜJ	1	UJ	1	UJ	93	0.43	T	1.95	0.48	73	0.33	NA NA	NA
152.3	1	U	1	U	1	U	1	U	1	U	101	0.04		0.22	0.16	81	0.02	10	10
162.3	1	U	1	U	1	Ü	1	U	1	U	90	0.23		1.86	0.44	69	0,20	1 U	10
172.2	1	U	1	U	1	U	1	U	1	Ü	103	0.04		0.15	0.20	68	ND	1 U	10
183.1	1	U	1	U	1	U	1	U	1	U	92	0.05		0.09	0.05	66	ND	1 U	10
193.1	1	Ü	1	U	1	U	1	U	1	U	105	0.14		0,43	0.38	67	0.06	1 U	1 U
203.1	1	U	1	U	1	U	1	U	1	U	96	0,26		1.01	0.58	70	0.12	1 U	10
213.1	1	U	1	U	1	U	1	U	1	U	97	0.68		3.04	1,64	47	0,52	10	1 U
223.1	1	U	1	U	1	Ü	1	U	1	U	110	0.16		0.73	0.40	56	0.10	1 U	10

Depth	F 103A	_	C 122		4.4 Ciables-About	0.1	t t Tribbasesbase		Tab	_	Chlorobonnos	0	VOC DATA, ug/L Ethylbenzene	0	m.p-Xylene	^	a Vidaga (.3-Dichlorobenzene C		Dishleraheerens I	0.11	Dichloroporano	0	%SS
	Freon 123A	- 12	Freon 123	, 14 ,	1.1-Dichloroethane	77		Ψ,	Toluene	- 54	Chlorobenzene	<u>≅</u> ,		¥.		- 54		호		4		سل ک		₹,	
73.3	NA NA		NA	1 1	N/A		NA.	LĹ	NA NA		NA		NA .	. 1	NA	Ш	NA NA	_1_	NA NA		NA NA		NA .	_	82
82.3	NA NA		NA		NA.		NA.		NA		NA NA	-	NA		NA.		NA NA		NA		NA		NA		99
92.3	NA NA		NA		N/A		NA		NA	П	NA	1	NA		NA	T	NA NA	Т	NA .	Т	N/A		NA .		83
102.3	1	U	1	U	1	u	1	U	1	U	1	U	1	U	2	U	1 1	J	1 (1	1	U	1	U	109
112.3	NA NA		NA		NA	П	NA.	П	NA		NA	\neg	NA.	\neg	NA	П	NA NA	T	NA		NA NA		NA		84
122.3	NA NA	T	NA		NA.	П	NA.	П	NA	T	NA		NA		NA NA		NA NA	T	NA	T	NA NA		NA		84
132.2	NA NA		NA		NA.		NA.		NA NA	П	NA NA	T	NA		NA	1	NA NA	T	NA	T	NA		NA		76
142.2	NA NA		NA		NA.		NA.		NA		NA		NA NA		NA.	T	NA NA	T	NA	1	NA		NA		93
152.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1 1	U	1 1	J	1	U	1	U	101
162,3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1 1	J	1 (T	1	U	1	U	90
172.2	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1 1	υT	1 (J	1	U	1	Ü	103
183.1	1	U	1	u	1	U	1	U	1	U	1	U	1	U	2	U	1 1	u	1 (Ĵ	1	U	1	U	92
193,1	1	TU	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1 1	υl	1	J	1	U	1	U	105
203,1	1	U	1	U	1	U	1	lul	1	U	1	U	1	U	2	U	1 1	u	1 (J	1	U	1	U	96
213,1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1 1	Ū.	1 (1	1	U	1	U	97
223.1	1	U	1	U	1	U	1	Ü	1	U	1	U	1	U	2	TU	1	ūΤ	1 1	J	1	U	1	U	110

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery
U = Undetected below the specified reporting limit.
J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled
NA = Not Analyzed for this analyte.

R2-0012059

Location: Hicksville, NY Project ID: Groundwater Profiling 03-1402 SEI #: 10/04-10/10/2003

Date Sampled: Date Analyzed: 10/04-10/10/2003 Report Date: 10/10/2003

HOLE ID =P18																			
					VOC D	ATA	, ug/L							i	INORGANIC DATA, mg/l	L		COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride														•		1	1.1-DCE / Freen	
		Q	t-Dichloroethene C	0	-Dichlorgethene	Q	Trichloroethene	Q	Tetrachloro	ethene	Q	% SS	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
76.7	1	U	1	1	1	U	1	U	2			102	0.06	0.08	0.06	23	ND	10	10
86.7	1	U	1 (J	1	U	1	U	1		U	95	ND	ND	ND	83	0,04	1U	10
96,7	1	U	1 U	1	1	U	1	U	1		U	98	0.05	0,19	0.14	114	0.03	1U	10
106.7	1	U	1 1)	1	U	1	U	1		U	96	ND	0.06	0.05	122	0.02	10	10
116.7	1	U	1 (1	1	U	1	U	1		U	94	0,08	0.33	0.34	185	0.07	10	10
126.7	1	U	1 L	J.	. 1	U	1	U	2			97	ND	0.03	0.04	190	0.02	1U	1U
136.7	1	U	1)	1	U	1	U	4			101	ND	0,03	0.04	64	0.03	1U	1U
146.7	1	U	1 L	J	1	U	1	U	6			100	0.68	1,03	0.23	97	0.03	10	1U
156.7	1	U	1 (J	1	Ü	1	U	1		U	92	ND	0.05	0.03	47	0.04	1U	1U
166.7	1:	U	1 1	J	1	U	1	1	1		U	105	0,37	0,96	0.54	37	0.07	10	10
176.7	1	U	1 4	J	1	U	4		1		U	97	0.12	0.63	0.23	35	0.04	10	10
186,7	1	U	1 (ال	1	U	1	Т	1		U	109	ND	0.03	0.03	54	ND	10	1U
207.7	1	U	1 (Л.	1	IUI	14	7	1		U	100	0.06	0.08	0.01	57	ND	1U	1U
217.7	1	U	1 L	J	1	U	10		1		U	99	0.07	0.07	0.01	67	ND	Detect	10
227.7	1	U	1 (J	8	П	51	T	1		U	100	0,08	0.11	0.03	47	ND	1 U	1U
237.7	1	U	1 (J	5		35	Τ.	1		U	108	NO	0.16	ND	52	ND	10	1U
247.7	1	U	1 (1	2	П	15		1			92	0.05	0.10	0.03	50	0.03	Detect	10
257.7	1	U	1 1	J	2	П	20	Т	1		U	93	0.17	0.40	0.32	76	0.11	Detect	10
267.7	1	U	1 [J	1	U	6		1			103	0.24	2.70	0.28	45	0.18	Detect	1U
277.7	1	U	1 (1	1	U	4		1		U	103	0,03	0.06	0.04	53	0.02	Detect	1U
287.7	1	U	1 (7	1	U	4		1		U	99	0.04	0.15	0.06	40	0.04	Detect	1U
302.7	1	U	1 (J	1	U	2		1		U	103	0,19	0.35	0,1	42	0.08	Detect	1U
328.3	1	U	1 1	١	1	101	6		1		U	106	0,21	1,09	0.15	29	0,08	10	1U
335.8	1	U	1 [7	1	U	10		1			106	0.03	0.26	0.06	33	0.03	1U	1U
344.0	1	U	1 (1	1	Ű	1	U	1		U	98	0.12	1.01	0.11	7	0.52	1 U	1U
350.3	1	U	1 (7	1	U	8	1	1		U	105	0.05	0.12	0.21	31	0.04	10	10

}														VOC DATA, ug/L												
Depth	Freon 123A	O Erec	n 123 C	1.1.09	ichlorenthann	0.1	1,1-Trichloroethan	- 0	Toluene	0	Chlorobe	07000	O	Ethylbenzene	0	m.p-Xylene	0	o-Xylene	0	1.3-Dichlorobenzene	140	chlorobenzen	n O 13	Dichlorobe	nana O	%SS
76.7	1 10011 1237	TUI	1 1		4	4	1, 1-1 HCHOIDEGIGE	1111	10ideile	ᇻ	CINGIODE		ŬΤ		Ť	2	ार्जें।	o-/ yiene	701			1	101	1	10	 102
86.7		ŭl	1 1			111		+=+		- 11	- 1		ň+	- 1	-11		Tül-		-10	1 1	-		111		- lü	 95
96.7		ŭ	1 1			111		121-		U			ň+		11	2	tül	1	-101				- 141		Ü	 98
106.7	1	u	1	`		131		10					#		ü	2	101		-18		-		-161-		- 10	 96
116.7		u	1			121		0		U					u	2	10		-18		J		- u		- 10	 94
126,7		Ü		:		U		10		-16			U		0	2	Tül-		-14				- 0		- 10	 97
136.7		lül	1 1			tül	1	TÜ -		- U			끍		0	2	Ü		-14		-	<u> </u>	-101		- 10	 101
146.7	1	u		`		141		4		- 0			壯		11		Tül-		-10		-		U		U	 100
156.7		U	1		1	10		U		U	1		쒸	1	<u> </u>	2	101		-10		-		- U	1	U	92
166.7		U		-		10		191		-10	- 1		쒸		- 10	2	10		- 10		-				- lü	105
176.7		U	-	1		101		10			1		씱	1			101		U		4		U		- lö	97
186,7			1			Hül-	<u> </u>	101		U			H	1	-		U		10			!	-1-1			109
207.7		U	1 1			141		U		U					U	2	U	<u> </u>	- 10				U	1		
207.7		U	1 1	4		IUI.	1	U	1	U	1		빗	1	U	2	U	1	U	1	U L		U	1	U	100
		U	1 1	,		U	11	U	11	U	1		U	1	U		U	11	U	1			U	11	U	 99
227.7	1	101	1	4	1	U	1	U	1	U	1		븭	1	U	2	U	1	Ü			1	U	1		100
237.7	1	U	1	1	1	U	11	U	1	U				1	U	2	U	1	U	1 1	-	1	U	1	U	108
247.7	1	U	1	٧	1	U	11	U	1	U			U	1	U	2	IUI	1	U	1	~	1	U	1	U	 92
257.7	11	U	1 (1	1	U	11	U	1	U	1		U	1	u	2	IUI	1	U	1	U	1	Ü	1	U	 93
267.7	1	U	1	ال	1	U	11	U	1	U	1		U	1	U	2	U	11	U	1 1	JJ	1	UJ	11	UJ	 103
277.7	1	U	1	٧	1	$\perp \perp$	1	U	11	U	1		U	1	U	2	IU	1	U	1	U	1	U	1	U	 103
287.7	1	U	1 (1	1	U	11	[U]	11	U	1		U	1	U	2	U	11	[U	1	U)	11	U	1	U	 99
302.7	1	U	1 (1	1	U	11	U	11	U	1		U	1	U	2	U	1	U		U	1	U	1	U	 103
328.3	1	U	1	1	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	U	1	U	1	U	 106
335.8	1	U	1	J	1	U	1	U	1	U	1		U	1	U	2	U	1	U	11	U	1	U	1	U	106
344.0	1	U	1 1	J	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	U	1	U	1	υ	98
350.3	1	U	1 1	1	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	U	1	U	1	U	105

Client: GTEOSI Hicksville, NY Location: Project ID: Groundwater Profiling SEI#: 03-1402 Date Sampled: 8/04 - 8/13/03 Date Analyzed: 8/04 - 8/13/03 Report Date: 8/14/2003

HOLE ID = P20																		
					VOC E	ATAC	L, ug/L						I	NORGANIC DATA, mg/l	L			COMPOUNDS
Depth	Vinyl Chloride					_	w	_		_		- +2					1.1-DCE / Freon	4.2.004.0
			t-Dichlorcethene		c-Dichloroethene	0	Trichloroethene		Tetrachioroether			Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79.6		U		U	1	14	1	U	1	L		ND ND	0.12	0.14	26	0.02	10	10
89.6		14		U.		14		빔		L		ND_	0,06	0.04	167	0,02	1U	10
99.6		U				141	1		1	- 1	82	0.05	0,17	0.17	33	0.03	10	10
109,6	1	101		U	1	101	1	U	1	L		0.14	0.18	0.03	25	ND	10	1U
119.6	11	U		U	11	U	1	U	1			0.11	0.14	0,03	18	ND	10	10
129,6		U		u	1	U	1	U	. 1	_ !!	84	0,07	0.15	0,13	19	ND	10	10
139,6	1	U		U	1	U	1	U	1	1		0.15	0,29	0.29	30	0.05	1U	10
149,6	1	U		U	1	U	11	U	11	- 1		ND	0.06	0.03	53	0.02	10	10
159,6	11	U	1	U	11	U	1	U	11	_ L		0.05	0.09	0.02	83	ND ND	10	10
169,6	11	U	1	U	1 1	U	1	U	1]į	83	0.04	0.06	0,03	69	ND	1U	10
179,6	1	U		U	1	U	1	U	1	T	90	0.06	0.13	0.04	32	0.02	10	1U
189,6	1	U	1	U	1	U	1	U	1	Į L	91	0.08	0.17	0,08	70	ND	10	10
209,7	1	U	1	U	1	U	1	U	1	7	96	0.09	0.44	0,22	64	0.04	1U	1U
220,7	1	U	1	U	1	U	1	U	18		95	0.08	0.27	0.06	246	ND	1U	10
229,7	1	U	1	u	1	u	1	U	2		103	0.07	0.28	0.14	56	0,07	1U	10
269,6	1	u	1	U	1	U	1	U	20		94	0.06	0,15	0,17	186	0.04	10	10
281.9	1	U	1	U	1	U	1	U	8		87	0.07	0.89	0.42	65	0.12	10	10
289,6	1	U	1	U	1	u	1	U	10		87	0.03	0.07	0,05	51	0.02	10	1U
298,7	1	U	1	u	1	U	2		41		95	0.09	0.27	0.11	34	0.02	10	10
309,6	8	lul	8	lul	8	Tul	8	Tu	595	1	98	0.07	0.12	0.08	92	ND	8U	80
319,6	4	UJ	4	UJ	4	Tuil	14	J	281	1		0.04	0.06	0,05	143	ND	4U	4U
328,2	1	IJ	1	UJ	1	UJ	1	lu _J	5	1		ND	0.03	0,03	74	ND	10	10
339,6	1	U	1	lul	1	tul	1	tu	1	1		ND	ND	0.05	49	ND	1U	10
349.6	1	lust	1	UJ.	<u> </u>	LUJ	1	tui	1	- lü		ND	ND	0.02	59	0,02	1U	10
359.6	1	lui	1	tuit	1	tuil	1	túj	1	U		0,12	0.22	0,30	27	0.02	10	10
369.6	1	100	1	Tül	1	u	1	111	2	- 1	104	1,60	2.50	8,80	140	ND ND	10	10
379.6	1	tül		tül	1	tul	1	tü	5	-	91	0.11	0.17	0.28	412	0.05	10	10
392.0	1	tu		tüt	1	tu	1	tü		_	108	0.04	0.73	0.12	320	0.02	10	10
428.0	1	tüt		ΙŭΙ	1	Tul	1	ť	6	-	104	ND ND	0.04	0.10	650	0.02	10	10
462.9		10		tül	i -	Tu	3	+	12	-+	118	0.08	0.25	0.07	835	0.06	10	10
469.2		10		u	1	Tu	10	+	25	-+	117	0.04	0.15	0.13	1140	0.06	10	10
476.7		111		ŭ		tül		Ιū		-	122	ND ND	0.13	0.06	463	0.03	10	10

·																_										
1													VOC DATA, ug/L													
Depth	Freon 123A	Q	Freon 123	Q	1.1-Dichloroethane	0	1.1.1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q		Q	m.p-Xylene	Q	o-Xvlene	Q 1	1_3-Dichlorobenzene	Q 1	.4-Dichlorobenzene (2 1.2	-Dichloroben	zene Q		%SS
79.6	1	TUI	1	Tül	1	ΙŪΙ	1	Ü	1	TÜT	1	Tül		U		Ul		Ψľ		ŪΪ		11	1	U		90
89,6	1	U	1	U	1	u	1	U	1	Tul	1	U	1	U	2	U	1	U	1	U	1	J	1	U		92
99,6	1	U	1	Tul	1	Tu!	1	U	1	U	1	U	1	U	2	U	1	U	1	υl	1	ij	1	U		82
109.6	1	U	1	U	1	U	1	U	1	U	1	Tu	1	U	2	U	1	U	1	U	1 (1	J	1	U		83
119,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U		U	1	J	1	U		85
129,6	1	U	1	U	1	u	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	J	1	U		84
139,6	1	U	1	U	1	U	1	U	1	U	1	Ũ	1	U	2	U	1	U	1	U	1	U	1	U		100
149.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	ÜΪ	1	U		91
159,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	J	1	U		91
169,6	111	U	1	u	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	11	U	. 1	U		83
179.6	1	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U		90
189,6	1	[U]	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U		U	1	U	1	U		91
209.7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		96
220.7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	11	U		U	1	U .	1	U		95
229,7	11	U	11	U	1	U	1	Ü	1	U	1	U	1	U	2	U		U	1	U	1	Ü	1	U		103
269,6	1	U	1	u	1	U	1	U	1	U	1	U	1	U	2	U	11	U	1	U	1	U	1	U		94
281.9	1	U	11	U	1	U	1	Ü	1	U	. 1	Ü	1	U	2_	U	1	U		U	11	U	1	U		87
289.6	11	U	11	U	1	u	1	U	. 1	U	1	U	1	U	2	U	11	U	1	Ų	1	U	11	U		87
298.7	1	U	1	U	1	U	1	U	. 1	U	1	U	1	U	2	U		U	1	U	1	U	1	U		95
309,6	8	U	8	u	8	U	8	U	- 8	Ü	- 8	U	8	U	16	U		U		U	8	U	8	U		98
319.6	4	UJ	4	UJ	4	UJ	4	UJ	4	UJ	4	UJ	4	UJ	8	UJ UJ		UJ		ÜJ	4	J.J	4	JU.	<u> </u>	102
328.2	111	[UJ	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ	2			IJ		UJ		JJ	1	U.	i	75
339.6	1	U	1	U	1	U	1	U	1	UJ	1	U		U	2	U		U	1	U	1	u	. 1	U		96
349.6	11	m	11	UJ	1	UJ	1	UJ	1	UJ	1	UJ		UJ	2	UJ	1	UJ	1	UJ	1	J	1	U.		89
359,6	1	UJ	1	UJ	1	UJ	1	UJ	. 1	UJ	1	UJ		UJ	2	UJ	1	UJ	1	UJ	1	IJ	1	U.	1	98
369.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U		U	1	U	1	U[1	U	Ĺ	104
379.6	11	U	11	U	1	U	1	U	1	U	1	U	1	U	2	U	1 1	U	11	U	11	U	1	U		91
392,0	1	U	11	U	1	U	1	u	1	U	11	U	1	U	2	U	1	U	1	U	11	U	1	U		108
428.0	1	U	1	U	1	U	1	U	1	U	1	U	1 1	U	2	U		U	1	U	1	U	1	U		104
462.9	1	Ü	11	U	1	U	1	U	1	u	1	U		U	2	U		U	1 1	U	1	U	1	U		118
469.2	11	U	1	U	1	U	1	U	1	U	1	U	1	Ų	2	U		U	1	U	1	υ	1	U		117
476.7	1	U	1	U	1	U	1	U	1	U	1	U	1 1	U	2	U	1	U	1	U	1	U	1	U		122

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery
U = Undetected below the specified reporting limit.
J = Estimated value.

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEI #: 03-1402 Date Sampled: 6/24 - 7/01/03 6/24 - 7/02/03 Date Analyzed: Report Date: 7/02/03

HOLE ID = P23	r															F	
HULE ID - P23																	i
				VOC DA	ATA,	ug/L							INORGANIC DATA, mg/L				COMPOUNDS
Depth	Vinyl Chloride														1	1.1-DCE / Freon	
		Q t-Dichloroethene	<u>Q</u>	c-Dichloroethene	Q	Trichloroethene	Q	Tetrach oroethene	Q	% SS	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
80,1	1	U 1	U	1	U	1	U	13		109	ND	0.06	0.06	35	ND	1 U	1 U
90.1	8	U 8	U	8	U	8	U	510		104	0.05	0,16	0,10	34	ND	8 U	8.0
100,1	20	U 20	U	20	U	20	Ų	3100		108	0.06	0.12	0.10	61	ND	20 ∪	20 U
110.1	3	U 3	U	3	U	3	U	240		113	0.07	0.17	0,13	43	0.02	3 ∪	3 U
120.1	1	U 1	U	1	U	1	U	26	П	115	0.03	0.07	0.06	50	ND	1 U	10
130,1	1	U 1	U	1	V	1	U	7	П	82	0.09	0.25	0.21	45	0.02	1 U	10
140.1	1	U 1	U	1	U	1	U	6		77	0.03	0.35	0.22	51	0.02	1 U	1 U
150.1	1	U 1	U	1	U	1	U	4		107	0.09	2.75	2.30	68	0.35	Detect	1 U
160.1	1	U 1	U	1	U	23		13	П	82	1,80	2.94	2.25	66	0.03	Detect	1 U
170.1	1	U 1	U	1	U	7		6		80	ND	0.19	0.14	67	0.03	10	1 U
180.1	1	U 1	U	10	Т	110		11	П	84	0.03	0.05	0.18	65	0.05	1 U	1 U
190.1	3	U 3	U	13		150		12		114	0,85	3,10	1.40	81	0.63	3 U	3 U
200.1	1	U 1	U	3	-	48		5	П	112	ND	0.18	0,12	135	0.04	1 U	1 U
210,1	1	U 1	U	1	U	1	U	2		80	0.19	0.58	0.42	85	0.12	10	1 U
220.1	1	U 1	U	2		31		3		111	ND	0.04	0,06	108	ND	1 U	1 U
227.7	1	U 1	U	2		44		4		111	0.09	0.61	0.33	87	0.10	10	1 U
239.8	1	U 1	U	1	U	2		1	U	103	0.05	0.10	0.11	82	0.02	10	10
252.0	1	U 1	U	1	U	19		27		111	0.03	0.15	0,13	75	0,02	1 U	10
262.0	1 1	U 1	U	1	U	14	1	7		99	0.03	0.09	1.60	108	ND	10	1 U
287.0	1 1	U 1	U	1	U	6	П	9		111	0.15	2.41	0.45	247	0.09	1 U	1 U
293.5	1	U 1	U	1	U	2		9	П	111	0,45	1.25	0.75	403	0.30	1 U	1 U
334.1	1	U 1	U	1	U	11	1	1		107	0.04	0,06	0.09	163	0.04	1 U	1 U
343.4	1	U 1	U	1	U	4	1	10	1	99	ND	ND	0.07	499	0.02	1 U	1 U
347.4	1	U 1	U	1	U	1	1	3		99	ND	0.05	0.03	208	0.02	10	1 U

										_			VOC DATA, ug/L	_		_					. 6:	0 4 2 0		0	%SS
Depth	Freon 123A		Freon 123	9.	1,1-Dichloroethane	91	1,1-1 richloroethane				Chlorobenzene		Ethylbenzene 9	<u>u</u>	m.p-Xylene	, ¥ ,	o-Xylene		3-Dichlorobenzene	<u>u</u> 1	4-Dichlorobenzene		chloropenzei		
80.1	1	U	11	U	1 1	U	11	U		U		υ	1 1	U	2	U	1	U	11	U.		U	1	U	109
90.1	8	U	8	U	8	U	8	U		U	8	U	8	U	16	10	8	U	8	IUL		U	8	U	104
100.1	20	U	20	U	20	U	20	U		U	20	U	20	U	40	U	20	U	20	U	20	U	20	U	108
110.1	3	U	3	U	3	U	3	U		U	3	U	3	u	6	U	3	U	3	IU]	3	U	3	U	113
120.1	1	U	11	U	1	U	1	U	1	U	1	U	1 1	U	2	U	1	U	11	U	1	U	1	U	115
130.1	1	U	1	U	1	U	1	u	1	U	1	비	1 1	U	2	U	1	U	1	U	1	U	1	U	82
140,1	1	U	1	U	1	U	1	U	1	U	1	U	1 1	U	2	U	1	U	1	U	11	U	1	U	77
150.1	1	U	1	U	1		1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	107
160,1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	82
170.1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	80
180.1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	TU	1	U	1	TU	1	U	1	U	84
190,1	3	U	3	U	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	TU	3	U	3	U	114
200.1	1	U	1	U	1	U	1	5	1	U	1	U	1	U	2	U	1	U	1	TU	1	U	1	U	112
210.1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	u	1	U	1	U	1	U	80
220,1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	311
227.7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	111
239,8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	u	1	U	103
252.0	1	u	1	Tul	1	U	1	U	1	lu	1	U	1	U	2	U	1	U	1	U	1	U	2		111
262,0	1	Ü	1	tut	1	ul	1	tut	1	tul	1	υİ	1	υl	2	Tul	1	Tut	1	TU	1	U	1	U	99
287.0	1	Tul	1	Tül	1	u	1	Ū-	1	tul	1	U	1	υl	2	Tul	1	Tul	1	Tul	1	U	1	U	111
293.5	1	Tul -	1	tút	1	u	1	ul-	1	tul		Ū	1	ū	2	Tul	1	Túl	1	tul	1	U	1	U	111
334.1	1	lul	1	tút	1	Ū	1	υl	1	1		ŭ	1	ü	2	Tül	1	Tüt	1	tul	1	U	1	u	107
343,4	1	101	1	10	1	Ü	1	u	<u> </u>	tü		ŭ	1	ü	2	tül	1	tul	1	tút	1	U	1	tūl	99
347.4	1	lül -	i	101	1	ŭ	<u> </u>	Ü	<u>i</u>	lü		히	i	υl	2	101	1	tüt	1	tül	1	ū	1	- U	99

Location: Hicksville, NY Project ID: Groundwater Profiling

SEI#: 03-1402 Date Sampled: 6/16 - 6/19/03 Date Analyzed: 6/16 - 6/19/03 Report Date: 6/19/03

HOLE ID = P-24			·		***************************************									***************************************				
					VOC D	ATA,	ug/L						1	INORGANIC DATA, mg/L		1	COELUTING	COMPOUNDS
Depth	Vinyl Chloride																1,1-DCE / Freon	i i
		Q t-Dichl	oroethene Q	c-Dichlo	oroethene	Q	Trichtoroethene	Q]	Tetrachloroeth	ene Q	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
77,4	1	U	1 U		1	U	1	U	1	U	102	ND	0.15	0.08	23	0.03	10	10
87.4	1	U	1 U		1	U	1	U	1	U	98	0.06	0.20	0.05	73	0.04	1 U	1 U
97.4	1	U	1 U		1	U	1	U	1	- lu	98	0.68	1,33	0.68	87	0.57	1 U	1 U
107.4	1	U	1 U		1	U	1	U	1	U	98	0.13	0.40	0.27	92	0.12	1 U	1 U
115.4	1	U	1 U		1	U	1	U	1	U	98	0.10	0.20	0.16	92	0.06	1 U	1 U
127,3	1	U	1 U		1	U	1	U	1	U	102	ND	0.10	0.06	135	ND	Detect	1 U
137.3	1	U	1 U		1	U	1	TT	1	Ü	104	0.06	0.25	0.1	173	0.03	Detect	1 U
147.3	1	U	1 U		1	U	2		1	U	98	0.10	0.12	0.04	185	ND	Detect	10
157.3	1	U	1 U		1	U	1	U	1	L	97	0,07	0.11	0.03	208	ND	Detect	1 U
167.3	1	U	1 U		1	U	1	U	1	L	96	ND	0.05	ND	221	ND	1 U	10
177.3	1	U	1 U		1	U	1	U	1	L	95	0.12	0.30	0.09	295	0.04	Detect	1 U
187.3	1	U	1 U		1	U	2		1	L	95	ND	0.06	0.03	280	0.02	Detect	1 U
197.3	1	U	1 U		1	U	2		1	L	104	ND	0.07	0.02	250	0.02	Detect	1 U
207.3	1	U	1	1	2	П	8	TT	1	L	105	ND	0.03	0.02	122	0.02	Detect	1 U
217.3	1	U	1 (3	П	25	Z	2		110	ND	0.05	0.05	87	0.03	Detect	1 U
227.3	1	U	1 L		1		9	\Box	1	L	110	0,08	0.25	0.13	95	0.03	Detect	10
237.3	1	U	1 4		1	U	1	U	1	L	104	ND	0.08	0.03	77	0.02	Detect	1 U
247.3	2	U	2 (2	U	6		2	L	107	ND	0.10	0.06	72	0.04	Detect	2 U
257.3	1	U	1		1	U	5		1	L	105	ND	ND	ND	74	0.02	Detect	1 U
267.3	1	U	1		1	U	1	U	1	t	100	0.09	0.13	0.11	113	0.04	Detect	1 U
277.3	1	U	1 L		1	U	1	U	1	L	102	0,05	0.16	0.09	131	0.03	Detect	1 U
287,3	1	U	1		1	U	1	U	1	L	104	ND	0.06	0.02	81	0.03	Detect	1 U
297.3	1	U	1 L		1	U	1	U	1	L	101	0.18	0.46	0.24	64	0.04	Detect	1 U

													1/00 DATA												
Depth	Freon 123A	Q	Freon 123	Q 1	.1-Dichloroethane	Q 1	.1.1-Trichloroethan	e Q	Toluene	Q	Chlorobenzene (VOC DATA, ug/L Ethylbenzene	Q	m.p-Xvlene	Q	o-Xylene	Q 1.	3-Dichlorobenzene	Q 1.4	1-Dichlorobenzene	Q 1.2-E	Dichlorobenzer	ne Q	%SS
77.4	1	TUT	1	U	1	Ū	1	TUT	1	TU		ŪΤ	1	Ū	2	TUI	1	Tul	1	U	1	U	1	U	102
87.4	1	U	1	U	1	U	1	U	1	U	1 1	υĪ	1	U	2	U	1	U	1	U	1	U	1	U	98
97.4	1	U	1	U	1	U	1	U	1	U	1 1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
107.4	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
115.4	1	U	1	U	1	Ü	1	u	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
127.3	1	U	1	U	1	U	7		1	U	1 1	U	1	U	2	U	1	U	1	U	1	U	1	U	102
137.3	1	U	1	U	1	U	11		1	U	1 1	U	1	U	2	U	1	U	1	U	1	U	1	U	104
147.3	1	U	1	U	1	U	12		1	U	1 1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
157,3	1	U	1	U	1	U	18		1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	97
167,3	1	U	1	U	1	U	1	U	1	Ü	1	ŪΪ	1	U	2	U	1	U	1	U	. 1	U	1	U	96
177,3	1	U	1	U	1	U	7		1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	95
187.3	1	U	1	U	1	U	25	Z	1	U	1	ŪΓ	1	U	2	U	1	U	1	U	1	U	1	U	95
197.3	1	U	1	U	1	U	20		1	U	1	ŪΪ	1	U	2	U	1	Ú	1	U	1	U	1	U	104
207,3	1	U	1	U	1	П	94	1	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	105
217.3	1	U	1	U	3		130	T	1	U		U	1	U	2	U	1	U	1	U	1	U	1	U	110
227.3	1	U	1	U	1		92		1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	110
237.3	1	U	1	U	1	U	11		1	U		U	1	U	2	Ü	1	U	1	U	1	U	11	U	104
247.3	2	U	2	U	2	U	71	TT.	2	U	2	U	2	U	4	U	2	Ü	2	U	2	U	2	U	107
257.3	1	U	1	U	1	U	33	TT	1	U	1	U	1	U	2	U	1	U	1]U]	1	U	1	U	105
267.3	1	U	1	U	1	U	6	TT	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	100
277,3	1	U	1	U	1	U	2	TT	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	102
287.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	u	1	U	1	U	1	U	104
297.3	1	U	1	TU	1	U	1	TUT	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	101

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling 03-1402 SEI #: Date Sampled: 7/08 - 7/14/03 Date Analyzed: 7/08 - 7/14/03

7/14/03

Report Date:

HOLE ID = P25											[
					VOC DAT	A, ug/L							INORGANIC DATA, mg	<i>r</i> L		COELUTING	COMPOUNDS
Depth	Vinyl Chloride	0 40		6:11		W. 11	_		_	~ ~-	Fe ⁺²					1,1-DCE / Freon 113	1.2-DCA / Benzene
79.7	1	101			oetnene u	Trichlargethene		Letrachioroethene	므	% SS		Fe, Total	Ammonia	Chloride	Chlorine, Total		1,2-DCA / Belizerie
89.7		lul -	1 1		U	1	빈			109	0.04	0.15	0,06	29	0.02	10	
99.7	ļ	10				1	U		U	108	ND ND	0.12 0.10	0,06	37	0.02	10	10
109.7		101				 			U	110				92	ND	10	
119,7		101	1 (U	- 3		94 107	ND ND	0.06	0.06 0.05	90	0.02	10	1 U
129.7		111	1 1		U		U.	- 8		96	ND ND	0.07	0.04	77	0.02	10	10
139.7		Tul-	1				101					0.04		21	0.02	10	10
149.7		101				30	++	1 2	-	109 97	ND ND	0.04	0,02	34	ND	10	10
159.7	1	101	1			47	+	- 2	+					69	0.02	10	10
169.7		[0]					+			105	0.11	1.53	1,55	68	0.09	10	
179.7		101-	1			12	\vdash		U	111	0.09	0.27	0.3	48	0.05	1 U	10
189.7	1	10				27	++		UI.	113	ND	0.08	0,04	73	0.02	10	1 U
199.7		Tu .	1 1			56	++	1	U	100	0,05	0.13	0,09	78	0.05	10	10
209.7	1	141	1 !			160	+-+	1	-	120	0.16	0.34	0,22	61	0.11		10
	1	101	1 1			140	11	2		120	0,12	0,52	0.19	42	0.07	10	10
219.7	1	101-	1 1			140	11	2		118	0.10	0.55	0.26	41	0.06	10	10
229.5	3	U	3 1	2	3	310	11	3		118	0.08	0,38	0,13	46	0,06	3 U	3 U
239.5	1	10		1		100	11	2		108	0.06	0.12	0.22	41	0.04	10	10
249,5		U	1	1		61	11	2	_	96	ND	ND	ND	50	ND	10	10
259,5	1	U	1	4		52	11	1	U	118	0.02	0,09	0,12	57	ND	1 U	1 U
269.5	1	U	1	1	10	2	1.1	1	U	112	0.09	0.39	0,25	57	0.09	1 U	10
275.8	1	U	1	4	U	11	U	1	U	103	ND	0.05	0,07	49	0.03	10	10
290.0	1	U	1	1	L	15	\perp	1	U	116	ND	0.07	0.05	83	0.02	1 U	1 U
300.0	1	U	1		L	4	\perp	1	U	113	ND	0.42	0.18	105	0,03	10	10
310.0	11	U	1			4	\perp	1	U	109	ND ND	0,08	0.09	88	0.02	1 U	10
320.0	1	U	1	1	L	1	U	1	U	100	ND	0.19	0.14	58	ND ND	10	1 U
330.0	1	U	1		L	1 1	U	1	U	96	0.12	0.65	0.29	55	0.03	1 U	1 U
340.0	1 1	U	1		16	11	U	1	U	96	ND	0.05	0,06	64	0.02	1 U	1 U
349,4	11	U	1			10		1		103	ND ND	ND	ND	193	ND	1 U	1 U
370.0	1	IUI	1		L	1	U	1	U	109	0,11	0.36	0.4	62	0.04	1 U	10
379.2	1	[0]	1	1	L	1	U	1	U)	109	0.07	0.12	0,16	30	ND	1 U	10

										VOC DATA, ug	L								-			
Depth	Freon 123A				1.1.1-Trichloroetha		Toluene	Q	Chlorobenzene Q	Ethylbenzene	<u>Q</u>	m.p-Xylene	<u>Q</u>			hlorobenzene (1.4-D	ichlorobenzene C		-Dichlorobenzene		%SS
79.7 89.7		U 1	U	1 1	1	U	1	U	1 U	1	U	2	U	1 1		1 1	J	1	1	1	U	109
	1	0 1	U	1 1	1 1	U	1	U	1 U	1	U		Ü	1 1	1	1	J	1	1	1	U	108
99.7	11	U 1	U	1 1	1	U	1	U	1 0	1	U		U	1 1	J	1	J	1 L	J	1	U	110
109,7	1 1	1 1	101	1 1		U	1	JUI	1 U	11	U		U	1 1	J	1	J	1 \	1	1	U	94
119.7	1	0 1	U	1 1		U	1	U	1 U	11	U		U	1 1		1 1	J	1	1	1	U	107
129.7	1	U 1	U	1 1	4	U	11	Ų	1 U	1	U		U	1 1		1 1	j	1 1	J	1	U	96
139.7	11	0 1	U	1 1		U	1	U	1 U	11	U		U	1 1	J	1 1	J	1 L	ار	1	U	109
149.7	1 1	1 1	U	1		U	1 1	U	1 U	1	U		U	1 1	J	1	J	1 (1	1	U	97
159,7	1	U 1	U	1] [J 1	[U]	1	U	1 U	1	U	2	U	1 1		1	J	1 L	J .	1	U	105
169.7	11	U 1	U	1 1	1	U	1	U	1 U	1	U	2	U	1 1	J	1 1	J	1 L	1	1	U	111
179.7	1	U 1	U	1	J 1	U	1	U	1 U	1	U	2	U	1	J	1	J	1 1	J	1	U	113
189.7	1	U 1	U	1 (J 1	U	1	U	1 U	1	U	2	U	1	J	1	U	1 (J	1	U	100
199.7	1	U 1	U	1 (1 ا	U	1	U	1 U	1	U		U	1	U	1	J	1 (J	1	U	120
209.7	1	U 1	U	1 1	ا ا	U	1	U	1 U	1	U	2	U	1	U	1		1 (J	1	Ū	120
219.7	1	U 1	U	1 (J 1	U	1	U	1 U	1	U	2	U	1	J	1	J.	1 1	J	1	Ü	118
229,5	3	U 3	U	3 (3	U	3	U	3 U	3	U	6	U	3 1	J	3	u	3 (J.	3	U	118
239.5	1	U 1	U	1 1	1	U	1	U	1 U	1	lul	2	U	1	U	1	u l	1 1	J	1	U	108
249.5	1	U 1	U	1 1] 1	U	1	TU	1 0	1	U	2	U	1 1	U	1	U	1 1	J	1	U	96
259.5	1	U 1	U	1 1	J 1	U	1	U	1 U	1	U	2	U	1	ul -	1	ū†	1]	1	U	118
269.5	1	U 1	U	1 1	1	101	1	Tut	1 [U]	1	lul	2	U	1	ul -	1	11	1 1	1	1	U	112
275,8	1 1	U 1	lul	1 1] 1	Tu!	1	u	1 Ü	1	tüt		Ū	1	<u></u>	1		1 1	1	1	tul	103
290.0	1	U 1	U	1 1	1	-tut-	1	tul	1 0	1	ΙūΙ	2	ũ -	1 1	<u> </u>	1		1 1	-	1	151-	116
300.0	1	U 1	lul -		1	-tūl	1	10	1 10	1	tūl		ñ-	1 1	<u> </u>	1			1	1	171	113
310.0	1		0		1 1	- lül	1	101	1 10	<u> </u>	ŭ		iil-		ul	1	***	1	1	-	101-	109
320.0	1	101	Tul-	1 (1	tůl	1	111	1 11				Ü -		<u> </u>	1			1			100
330.0	1	tūt i	lul	1 1		ŭ		Ü			U		ül-		<u> </u>	1 1		4	11		- j -	96
340.0	 	lul i	Ιŭ		j 	- U		10	1 0		H	2	-		U	1					-111	96
349.4	1 1	til i	t ől –		1	- 10	1	101			ü	2	11		<u> </u>	1					151	103
370.0	 	1 1	tŭl	+ 1	1	- 1::-		무하	1 0		H		-		Ü	1	<u> </u>	1	1 -		19	109
379.2	 		lül –		1	10		내			눼		11		<u> </u>		U	- 1			101	
313.2	<u> </u>	101	101	1 /		101	1	101	1 101	1	101		U .	1 1:	U]	1	U J	1 1	J	1	Inl	109

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery U = Undetected below the specified reporting limit. J = Estimated value.

Hicksville, NY Location: Project ID: Groundwater Profiling SEL#: 03-1402

5/12 - 5/20/03 Date Sampled: Date Analyzed: 5/12 - 5/20/03 5/20/03 Report Date:

HOLE ID =P26				-			***************************************												
					VOC D	ATA	ug/L								INORGANIC DATA, mg/L	L		COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride												į.					1,1-DCE / Freon	1
		Q	t-Dichloroethene	Q 9	c-Dichloroethene	Q	Trichloroethene	Q I	trachloroeth	nene C	1 1	% SS	Fe*2	Fe. Total	Ammonia	Chloride	Chlorine, Total	113	1.2-DCA / Benzene
76,9	1	U	1 1	U	1	U	1	U	1	L	J	110	ND	0.27	0.14	263	ND	1 U	1 U
86.8	1	U	1 1	U	1	U	1	U	1	L	J	113	0.08	0,89	0.40	310	0.16	1 U	1 U
96.8	1	U	1	U	1	U	1	U	1	10	J	103	0.03	0,95	0,35	478	0.18	1 U	1 U
106.8	1	UJ	1	U	1	U	1	U	1	- 1	J	102	0.12	0.64	0,23	107	0.07	1 U	1 ∪
116,8	1	UJ	1	U	1	U	1	U	1	Ų	1	100	0.23	1.58	0.47	128	0.23	1 U	10
126.8	1	UJ	1 1	U	1	U	1	U	1	- (i	103	0.05	0.24	0.15	132	0.05	10	1 U
136.8	1 1	UJ	1	U	1	U	11	Ü	1	Į.		97	0.29	1,55	1.5	124	0.26	1 U	1 U
146.8	1	U	1	U	1	U	1	U	1	- 1		100	0.04	0.11	0.08	243	ND	1 U	1 U
152.3	1	U	1]	U	1	U	1	U	1	- L	j	101	0.25	7,60	3.2	122	0.12	1 U	1 U
162.3	11	U	1	U	1	U	1	U	1	į		100	0.31	1.21	0.53	143	0.27	1 U	1 U
172.3	11	U	1 1	U	1	U	11	U	1	L)	102	0.23	1.01	0.7	207	0.3	1 U	1 U
182.3	1 1	U	1]	U	1	U	1	U	1	1)	105	0.04	0,13	0.12	97	0.04	1 U	10
192,3	1	U	1 1	U	1	U	1	U	1	1)	98	0.15	1.76	1,45	137	0.29	10	1 U
202.3	11	U	1	U	1	U	11	U	1	ŧ	J	105	0.08	0.48	0.26	132	0.05	1 U	1 U
211.3	1	U	1	U	1	U	1	U	1	i)	93	0.23	1.88	0,53	108	0.17	10	1 U
221,3	1	U	1	U	1	U	1	U	1	ŧ		111	0,17	0,56	0,55	81	0.22	1 U	10
231.3	1	U	1	U	1	U	1	U	1	ŧ		108	0.03	0.32	0.14	94	0.03	1 U	1 U
241.3	1	U	1	U	1	U	1	U	1	L	J	109	0.21	0.38	0,39	89	0.16	1 U	1 U
257.3	1	UJ	1	U	1	U	1	U	1	ŧ	J	93	0,10	0.42	0.28	79	0.15	10	1 U
267.1	1	UJ		U	1	U	1	U	1	- L	J	89	0.44	0.97	0,63	95	0.39	1 U	1 U
276.5	1	101	1	U	1	U	11	U	1	ŧ		112	0.04	0,28	0,63	114	0.05	10	10
286,5	1	U	1	U	1	U	5		1			114	ND	0.95	0.9	61	0.15	Detect	1 U
295.9	1	U	1	υI	1	U	2		1	- 10	J	117	ND	0.49	0.22	34	0.03	Detect	10

														VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon 123	Q :	1.1-Dichloroethane	Q 1	.1.1-Trichloroethan	Ω.	Toluene	Q	Chlorober	nzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xvlene	Q 1	3-Dichlorobenzene	1.4-Dichlo	obenzene	Q 1.2-D	ichlorobenze	ene Q	%SS
76.9	1	Ü	1	U	1	TU	1	U	1	U	1		ŪΪ	1	U	2	U	1	U	1	٠ اد		U	1	U	110
86.8	1	U	1	U	1	U	1	U		U	1		ũ	1	U	2	U	1	U	1 1	j -		U	1	U	113
96.8	1	U	1	U	1	U	1	U		U	1		U	1	U	2	U	1	U	1	J	1	U	1	U	103
106,8	1	U	1	U	1	U	1	U		U	1		U	1	Ü	2	U	1	U	1		1	U	1	U	102
116.8	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	3	1	U	1	U	100
126.8	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1 1		1	U	1	U	103
136.8	1	U	1	U	1	U	1	U	1	U	1		u	1	U	2	U	1	U	1 1	J '		U	1	U	97
146.8	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	Ü	1 1		1	U	1	U	100
152,3	1	U	1	U	1	U	1	U	1 1	U	1		U	1	U	2	U	1	U	1 1	J .	1	U	1	U	101
162.3	1	U	1	U	1	U	1	U		U	1		U	1	U	2	U	1	U	1]	J		U	1	U	100
172.3	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	j .	1	U	1	U	102
182.3	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	Ü	1	J .	1	U	1	U	105
192,3	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	Ų	1	J ·	1	U	1	U	98
202.3	1	U	1	U	1	U	11	U	1	U	1		U	1	U	2	U	1	U	1	J	1	U	1	U	105
211.3	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	J.	1	U	1	U	93
221.3	11	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	J ·	1	U	1	U	111
231.3	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	J .	1	U	1	U	108
241.3	11	U	1	U	1	U	11	U	1	U	1		U	1	U	2	U	1	U	1	ا ا	1	U	1	U	109
257.3	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	2		1	U	1	U	93
267.1	1	U	1	U	1	U	11	U	1	U	1		U	1	U	2	U	11	U	1	J ·	1	U	1	U	89
276,5	1	U	1	U	1	U	1	U	1	U	1		U	1	U	2	U	1	U	1	J	1	U	1	U	112
286,5	1	U	1	U	1		1		1	U	1		U	1	U	2	U	1	U	1	J .	1	U	1	U	114
295.9	1	U	1	U	11	U	11	U	1	U	1		U	1	U	2	U	1	U	1	U T	1	U	1	U	117

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEL#: 03-1402 Date Sampled: 5/03 - 5/08/03

5/03 - 5/08/03 Date Analyzed: 5/08/03 Report Date:

HOLE ID = P27													
			VOC D	ATA, ug/L				ı	INORGANIC DATA, mg/l	L	1		COMPOUNDS
0	Vinyl Chloride (O #1111111111	Q Tetrachloroethene	0 000	Fe ⁺²	Fe. Total	Ammonia	Chloride	Chlorine Total	1,1-DCE / Freon 113	1,2-DCA / Benzene
Depth	VIIIVI CINORGE	2 t-Dichloroethene Q	c-Dicisordemene	G Inchiologinene									
79.8	1 1	J 1 U	1	U 1	U 19	99	0.28	0.38	0.11	36	ND	10	10
89.8	1 1	U 1 U	1	U 1	∪ 22	92	0,28	0.36	0.02	99	ND	1 U	1 U
99.8	1 1	J 1 U	1	U 1	U 28	101	0.09	0.14	ND	60	ND ND	1 U	1 U
109.8	1 1	J 1 U	1	U 1	U 1	U 95	0.10	0.25	0,18	22	ND	10	1 U
119.8	1 1 1	U 1 U	1	U 1	U 21	103	0,11	0.23	0,06	32	ND	1 U	1 U
129.8		U 1 U	1	U 1	0 1	U 108	0.12	0.36	0.22	31	0.05	1 U	10
139.8	1 1	U 1 U	1	U 3	1	103	0.11	0,16	0,04	50	ND	1 U	1 U
149.8	1 1	U 1 U	1 1	U 1	U 4	99	0,09	0,16	0.03	63	ND	10	1 U
159.8	1 1	U 1 U	1	U 5	2	82	0.15	0.43	0.14	92	0.02	10	1 U
169.8	1 1	U 1 U	1	U 2	4	87	0,47	1,62	0.53	86	0.32	10	1 U
179.8	1 1	U 1 U	1	U 1	U 6	93	0.70	2,56	0,60	111	0.55	10	1 U
189.8	1	U 1 L	1	U 2	2	89	0.17	0.71	0.36	67	0.07	10	10
199.8	1 1	U 1 U	1	U 7	2	90	ND	0.26	0,15	82	0.05	1 U	1 U
209.8	1 1	Ü 1 Ü	2	30	1	99	ND	0.06	0.05	66	0.04	1 U	1 U
219.8	1 1	U 1 L	5	75	3	95	0.10	0.38	0.23	79	0,11	1 U	1 U
229.5	20	U 20 L	21	360	20	U 101	ND	0,10	0.04	62	0.04	20 U	20 U
239.5	20	U 20 L	25	450	20	U 101	0,04	0.09	ND	61	0.03	20 ∪	20 U
267.0	1 1	U 1 L	6	76	6	100	0.04	0.11	0.13	74	0.03	10	1 U
277.0	1 1	U 1 L	1	U 2	3	81	0.10	0.39	0.20	159	0.07	10	1 U

												VOC DATA												
Depth	Freon 123A	Q Freon 123	0	1 1-Dichloroethane	0.1	1.1-Trichloroethane C	,	Toluene	0	Chlorobenzene	0	VOC DATA, ug/L Ethylbenzene	n	m.p-Xylene	0	o-Xylene	0 -	.3-Dichlorobenzene	0 14-	Dichlorobenzena	۰ 0 ه	1.2-Dichlorobenzene	0	%SS
79.8	1	111 1	- 17	1 1	Ħ	1 1	-		ਹੈਂਜ	1	ਜੈਂਜ	1	ιἇτ	2	n	1 1	Ť,	1	111	1	1111	1	Till	99
89.8	 	111 1	- 11		퓌	1 1			-		11	`	111		111			i	11		111		111	92
99,8	1 - 1	1	-10		21						위		12				-				10		1	101
109.8		<u> </u>	- 0	1	U	1 1		1	니		U	1	U		U		4		U		101		101	
	3	U 1	- 10	1	4	1	1	1	U	1	니	1	U.	- 2	니	1	U	1	U	1	IU		U	95
119.8	1 1	U 1	U	1	U	1 [1	1	U	1	U	1	U	2	U	1	U	1	U	1	IU	1	U	103
129.8	1	U 1	U	1	U	1 (J	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	108
139.8	1	ป 1	U	1	U	1 (J	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	103
149.8	1	U 1	U	1	U	1 [3	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	99
159.8	1	U 1	Τü	1	U	1 1	Ji T	1	ul	1	υl	1	U	2	U	1	U	1	U	1	Tul	1	U	82
169.8	1 1	U 1	U	1	U	1 1	J	1	ū	1	ū	1	U	2	Ü	1	Ü	1	u	1	Tu	1	lul	87
179.8	1	UI 1	10	1	ī	1 1	1	1	U	1	īit-	1	Tit.	2	11	1	13	1	11	1	1111	1	U	93
189,8	 	11 1		 					ŭ		-		iii		-		ŭ	1	111		111	i	tūt	89
199.8	1 1	1 1	-10	1	111	1 1	-	1	픣		#	1	101		-		-		-	- i	101		101-	90
209.8		111	-18						-		-		101		-		4		- 1		101		lul-	99
	1 1	<u>U</u> 1	- 0	!	U	1 1	J		U		u	1	U		띡		U		U		141		+	
219.8		U 1	U	11	U	1 1	U L		U	1	U	11	U	2	U	1	U	1	U	1	10	1	U	95
229.5	20	U 20	U	20	U	20 ا	U L	20	U	20	U	20	U	40	U	20	U	20	U	20	JU	20	U	101
239,5	20	U 20	U	20	U	20 l	UL	20	U	20	U	20	U	40	U	20	Ų	20	U	20	U	20	U	101
267.0	1	U 1	U	1	U	1 (J	1	U	1	U	1	U	2	U	1	U	1	U	1	JU	1	U	100
277.0	1	U 1	U	1	U	1 1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	81

5/06/03

Mobile Laboratory Results Sheet

GTEOSI Client: Location: Hicksville, NY Project ID: Groundwater Profiling SEI#: 03-1402 Date Sampled: 5/02 - 5/06/03 5/02 - 5/06/03 Date Analyzed:

Report Date:

HOLE ID = P28								·							
			VOC D	ATA, ug/L						1	INORGANIC DATA, mg/L		[COELUTING 1.1-DCE / Freon	COMPOUNDS
Depth	Vinyl Chloride	Q t-Dichloroethene	Q c-Dichloroethene	Q Trichloroethene	<u>Q</u>	Tetrachloroethene	3 %	SS	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
77.9	20	U 20	U 20	U 20	U	1500	1	00	ND	0.06	0.10	22.5	ND	20 U	20 U
87.0	1	U 1	U 1	U 1		97		38	0.07	0.84	0.63	35	0.05	1 U	1 U
97.0	2	U 2	U 2	U 2	U	160	1	03	0.03	0.08	0.07	22	ND	2 U	2 U
107.0	2	U 2	U 2	U 2	U	2	J S	93	0.16	0.60	0.31	79	0.07	2 U	2 U
117,0	1	U 1	U 1	U 1	U	1	U S	95	0.00	0.06	0.05	140	ND	10	1 U
127.0	1	U 1	U 1	U 1	U	1	J 1	04	0.16	0.45	0.29	195	0.05	1 U	1 U
137.0	1	U 1	U 1	U 1	U	1	1 ال	08	0.09	0,94	0.75	75	0,09	1 U	1 U
147.0	1	U 1	U 1	U 1	U	1	U 1	03	0.06	0,26	0.16	125	ND	10	1 U
160.8	1	U 1	U 1	U 1	U	1	U) 1	04	0.04	0.12	0.14	84	ND	1 U	1 U
167.0	1	U 1	U 1	U 1	U	1	Ŭ E	39	0.15	0,61	0.37	79	0,08	10	1 U
177.0	1	U 1	U 1	U 1	U	1	U] E	38	0.09	0.43	0.19	93	0.03	1 U	10
187.0	1	U 1	U 1	U 1	U	1	U s	94	0.01	0,12	0.06	140	0,03	1 U	10
197.0	1	U 1	U 1	U 1	U	1	U s	90	0.03	0.17	0,11	156	0,03	1 U	10
207.0	1	U 1	U 1	U 1	U	1	U s	95	ND	0,05	0.05	182	0.02	10	10
217.0	1	U 1	U 1	U 1	U	1	U s	96	ND	0.30	0.23	87	0.06	1 U	1 U
227.0	1	U 1	U 1	U 1	U	1	U !	96	0.05	0,28	0.11	140	0.06	10	10
237.0	1	U 1	U/ 1	U 1	U	1	U :	92	0,10	0.41	0.19	110	0.12	1 U	10
247.0	1	U 1	U 1	U 1	U	1	U 9	95	0.08	1.29	0.21	147	0,12	1 U	10

											_													
												VOC DATA, ug/L												
<u>Depth</u>	Freon 123A	Q Freor	n 123 C	1.1-Dichloroethane	0	1,1,1-Trichloroethan	<u>Q</u>	Toluene	Q	Chlorobenzene	9	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	91	3-Dichlorobenzene	9 14	-Dichlorobenzen	9 1.2	-Dichlorobenze	ne Q	%SS
77.9	20	U 2	0 (U	J 20	TUT	20	101	20	U	20	U	20	TUT	40	U	20	U	20	U	20	[U]	20	U	100
87.0	1	U 1	1	J 1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	98
97.0	2	U 2	2 () 2	U	2	U	2	U	2	U	2	U	4	U	2	Ü	2	U	2	U	2	U	103
107.0	2	U 3	2 () 2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U	93
117.0	1	U 1	1 (1	U	1	U	1 /	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	95
127.0	1	U	1 (U	1	U	1	U	1	U	1	U	2	U	1	U	1	Ü	1	U	1	U	104
137.0	1	U	1 L	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
147.0	1	U	1 L		U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	103
160.8	1	U	1 (1 ا	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	104
167.0	1	U ·	1	J 1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	89
177.0	1	U	1 (U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	88
187.0	1	U ·	1 L	J 1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	94
197.0	1	U	1 L	J 1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	90
207.0	1	U .	1 (J 1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	95
217.0	1	U	1	J 1	U	1	U		U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
227.0	1	u ·	1 1	1 از	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
237.0	1	U	1 (J 1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	92
247.0	1	U	1 L	J 1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	95

Client: GTEOSI Hicksville, NY Location: Project ID: Groundwater Profiling 03-1402 SEI #: Date Sampled: 9/16-9/23/2003 9/16-9/23/2003 Date Analyzed: Report Date: 9/23/2003

HOLE ID =P29	Vinyl Chloride					vocı	DATA,	ug/L				***************************************				INORGANIC DATA, mg/L			COELUTING	COMPOUNDS
		Q	t-Dichlor	roethene Q	c-Dici	hloroethene	Q	Trichloroethe	ne C	Te	trachloroethen	e Q	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	1,1-DCE / Freon 113	1,2-DCA / Benzene
79.5	1	U		1 Ü		1	U	1	T		1	U	94	ND	ND	0.03	21	ND	10	10
89,5	1	U		1 U		1	U	. 1	L	J	1	U	97	0.07	0,34	0.33	46	0,08	10	10
99,5	1	U		1 U		1	U	1	ī	1	1	U	91	0,03	0.18	0.14	51	0.05	1U	1U
109.5	1	U		1 U		1	U	1	l	J	1	U	83	0.22	1.07	0.56	46	0,16	10	10
119,5	1	U		1 U		1	U	2			1	U	100	ND	0.06	0,04	22	ND	10	10
129.5	1	U	_	1 U		1	U	1	L	J	1	U	93	ND	0.06	0.03	11	ND	10	10
139.5	1	U		1 U		1	U	1	ı	J	1	U	119	ND	0.06	0.03	15	ND	10	10
149,5	1	U		1 U		1	U	1	L	J	1	U	96	ND	0.09	0.04	28	0,03	10	10
159,5	1	U	_	1 U		1	U	11	l	1	1	U	96	ND	0.12	0.03	38	ND	10	10
169,4	1	U		1 U		1	U	1	ı	1	1	U	97	ND	ND	0.03	45	ND	10	10
176.7	1	U		1 U		1	U	1	ı	J	1	U		0.09	0.36	0.32	32	0.06	10	10
191.3	1	U		1 U		1	U	1	1	J	1	U	101	0,06	0.23	0.25	37	0,06	10	1U
200.8	1	U		1 U		1	U	1	ı	J	16		106	ND	0.04	0,05	42	0.02	1U	1U
231,0	1	U		, , , ,		1	U	1	- 1		106		118	ND	0.10	0.06	68	ND	10	1U
239.5	1	U		1 U		1	U	1	t	J	22		116	0.67	1.77	0.23	81	ND	10	10
249.9	1	U		1 U	l	1	U	1	1	J	2		110	0.06	0.23	0,11	96	ND	10	10
259,5	1	U		1 U		1	U	1	L	J	19		102	ND	0,10	0,03	282	ND	10	10
268,4	1	U		1 U		1	U	1		J	14		104	ND	0.03	0.05	108	ND	10	1U
278,4	1	10		1 0		1	U	1	1	J	10		100	ND	0,06	0,04	62	0.03	10	1U
289.9	1	U		1 U		1	U	1	ı		1	U		ND	ND	0.04	39	0.02	10	1U
299.6	1	U		1 U		1	U	1	ı	J	1	U		0.04	0.17	0,05	44	0.03	10	1U
310.2	1	U		1 U		1	U	1	Į.	J	48		106	ND	0.08	0,05	45	0.02	1U	10
318.9	1	U		1 U		1	U	1	t	J	14		106	ND	0.08	0,05	46	0.02	10	10
329,9	1	U		1 U		1	U	1	1	J	10		103	0.06	0.09	0,09	20	0.02	10	1U
339,5	1	U		1 0		1	U	1	1	J	10		102	0.09	0.85	0.20	29	0.06	10	1U
360.0	1	U		1 U		1	U	1	ı	U	1		102	ND	0.07	0.05	93	0.04	10	10
369.2	1	U		1 U		1	U	1	1	U	2		102	0.03	0.11	0.10	130	0.02	1U	1U
390,0	1	U		1 U		1	U	1	1	U	1	U	83	ND	0,07	0.04	53	ND	1U	10
410.7	1	Ü		1 U		1	U	1		U	3		89	0.03	0.12	0,09	251	0.05	1U	1U

Depth	Freon 123A (2 Freon 123	0	1.1-Dichloroethane	0.1	1.1-Trichloroethan		Toluene	0	Chlorobenzene	0	VOC DATA, ug/L Ethylbenzene	٥	m.p-Xylene	0	o-Xylene		1 3 Dichlorohenzer	a 0	1.4-Dichlorobenzene	0 1	2-Dichlorobenze	na O	96	ss
79.5	1 1		ÜΠ	1	Till	1	TÖT	1	TÖT		ΙŌΤ		ार्केंग	2	πār	1	— T Ť		ΉŪ		ŬΙ	1	10		94
89.5	1 1		ŭ	1	u	-	tüt	<u>i</u>	lül		U		ιŭΙ	2	til				٦Ŭ		ŭ	1	u		97
99.5	1 1	1 1	ŭ	<u> </u>	111		tül	<u></u>	Tül		Ü		tül	2	túl			1 1	Τŭ		υl	<u>i</u>	U		91
109.5	1 1		ŭ	<u> </u>	tüt	<u>-</u>	101	i	Tül	i	10		l u	2	u	i	-1	1	Τŭ		ŭΗ	i	- iu		83
119.5	1	Ūl i	ü	i	Ū	1	lu l	1	tůt	1	Ü	1	tul	2	u	1		1	10		ū	1	Tu -		00
129.5	1 1	<u> </u>	ū	1	Ū	1	Tu -	1	tů	1	Ū	1	11	2	Tü	1		1	- Tu		Ü	1	-tūl-		93
139.5	1 1	ŭ i	ut	1	tút	1	túl	i	Tül	1	túl	i	u	2	Tu -	i	-ti	il i	Τŭ		U	1	U		19
149,5		Ū i	u	1	ΙÚΙ	1	Tül	1	tul	1	túl	1	ιŭ	2	túl	1			ΤŬ	1	ü	1	Tul		96
159,5	1 1	U 1	U	1	U	1	U	1	Tu	1	u	1	u	2	U	1	- 10	1	Ū	1	υİ	1	U	5	96
169,4	1 1	U 1	ut	1	tut	1	tul	1	lul	1	U	1	Ü	2	101	1	1	1 1	u	1	üΤ	1	ul		97
176,7	1 1		ut	1	U	1	tul	1	Tul	1	Ū	1	U	2	u	1	-1	1	TŪ	1	U	1	U		92
191,3	1 1		u	1	u	1	U	1	U	1	tüt	1	U	2	U	1	-1	1 1	TU	1	u	1	U	1	01
200.8	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	- 1	J 1	U	1	U	1	U	1	06
231.0		U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	I	J 1	U	1	U	1	U	1	18
239,5	1	U 1	U	1	U	1	U	1	U	1	Tu	1	U	2	U	1	1	J 1	U	1	U	2		1	16
249.9	1		U		U	1	U	1	U		U	1	U	2	U	1	-	J 1	U	1	U	1	U	1	10
259.5	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	Ü	1	ī	J 1	U	1	U	1	U	1	02
268,4	1 1		U	1	U	1	υ	1	U	1	U	1	U	2	U	1	ı	J 1	Ü	1	U	1	U	1	04
278,4	1	U 1	U	1	U	1	U	1	Ü	1	U	1	U	2	U	1	1	J 1	U	1	U	1	U	1	100
289,9	1		U	1	U	1	U	1	U	1	U	1	U	2	U	1	1	J 1	U	1	U	1	U	1	01
299.6	1 1		U	1	U	1	U	1	U	1	U	1	U	2	U	1	1	J 1	U	1	ul	1	u	\$	98
310.2	1 1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	- 1	1	U	1	U	1	U	1	06
318.9	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	1	J 1	U	1	U	1	U	1	06
329.9	1	U 1	U	1	U	1	U	1	U	1	U		U	2	U	1	1	1	U	1	U	1	U	1	103
339.5	1	U 1	U	1	U	1	U	1	U		U	1	υ	2	U	1		1 1	U	1	U	1	U	1	02
360,0	1 1	Ú 1	U	1	U	1	Ü	1	U	1	U	1	U	2	U	1	1	1	U	1	U	1	U		102
369,2	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	ı	J 1	U	1	U	1	U		102
390,0	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	u	1		J 1	U	1	U	1	U		83
410.7	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	1	1	U	1	U	1	U		89

Client: GTEOSI Location: Hicksville, NY Groundwater Profiling Project ID: SEL#: 03-1402 Date Sampled: 9/30 -10/08/2003 9/30 -10/08/2003 Date Analyzed:

Report Date:

HOLE ID =P30												T						
HOLE ID -F30																		
					VOC I	DATA,	ug/L							INORGANIC DATA, mg/L	•			COMPOUNDS
Depth	Vinyl Chloride	0 . 0										F +0			011	mile in Track	1.1-DCE / Freon	1,2-DCA / Benzene
					loroethene		Trichloroethene		rachloroethen		% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	
79.6	1	U		J	_1	U	11	U		U	87	0,06	0,31	0.23	59	0.06	10	10
89.6	1	U	1 (J	1	101	1	U	2		91	0.22	0.55	0.37	53	0,13	Detect	10
99.6	1 1	U	1 (1	1	IVL	11	101	1	101	98	0.48	1.45	1.70	49	0.31	Detect	10
119.6	1	U	1	ال	1	U	1	U	1	U	101	ND	0.10	0.14	55	0.03	10	1U
128,8	1	U	1	J	1	U	111	U	11	U	90	0.03	0.23	0.27	55	0.05	1U	10
139.6	1	U	1 1	ال	1	U	1	U	1	U	83	0,77	6,61	1,40	47	0.20	1U	10
149.6	1	U	1 (]	1	U	1	U	1	Ü	97	0.30	0.90	0.64	38	0.24	1U	1U
186.3	1	U	1 (7	1	U	1	U	1	U	104	ND	0.30	0.14	23	ND	1U	10
194.4	1	U	1 1	J	1	U	1	U	1	U	89	ND	0,73	0,07	27	0.02	1U	10
204.6	1	U	1 1	J	1	U	1	U	1		82	ND	0.03	0.02	29	0.02	1U	1U
214.6	1	U	1 1	J	1	U	1	U	3		82	ND	0.03	0.03	45	ND	10	10
224.6	1	U	1	J	1	U	1	U	7		82	0.04	0,14	0,16	53	0.02	10	1U
232.9	1 1	U	1 1	J	1	U	1	101	5	\rightarrow	80	0.17	0.39	0,39	49	0,09	10	10
244.6	1	U	1 1	J	1	Tül	1	10	66		97	0.17	0.49	0.29	55	0.09	10	1U
260.9	1	U	1 1	J	1	U	1	U	1	U	103	ND	0.04	0.03	48	0.02	1U	1U
269.0	1	ul	1	J	1	u	1	Tu	1	-tūt	95	0.15	0.45	0 44	39	0.11	1U	1U
279.0	1 1	U	1 1	U	1	Tul	1	U	1	U	95	ND	0.07	0.04	124	0.03	10	10
289.0	1	U	1 1	U	1	U	1	U	1	lul	97	ND	0.04	0.02	44	0.02	10	1U
298.6	1	U	1	Ü	1	tul	1	Tu -	1	-tūt	101	0.04	0.07	0.03	34	0.04	10	1U
307.5	1	U	1 1	11	1	tüt	1	101	1	-tūt	96	0.03	0.14	0,06	21	0.04	1U	1U
331,0	1 1	Ū	1	u l	1	tůl	1	tül	1	Ū	97	ND	0.07	0.09	18	ND	10	1U
340.0	 i 	Tu -	1	ŭl -	1	tút	1	tül	8	-+-+	100	0.12	0.23	0.25	20	0.06	10	1U
345.3	 	l ul	1	il -	1	tüt	1	111 -	6	-	102	ND ND	ND ND	0.04	21	ND	10	10
390.8	1 1	Ü	1 1	ŭl	1	tăl	1	tăl	<u>-</u>	-10	99	0.22	1.72	0.58	21	0.13	10	10
399.2	 	lül -	1	ŭl	1	111	1	t ul -	- i	Tül	102	0.10	0.54	0.27	12	0.09	10	10
406.6	 	t ül		ŭ	1	15	-	111		- lül	97	ND ND	0.13	0.05	14	ND ND	10	10
400.0	1	171		<u> </u>		171		1~1		101	31	1110	0.13	0.00	14	L ND		10

									·····				12,001												
													VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon 123	Ω:	1.1-Dichloroethane	Ω1	.1.1-Trichloroetha	Q 9.0	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xvlene	Q	o-Xylene	Ω.	1,3-Dichlorobenzene	91	4-Dichlorobenzene	0	1,2-Dichlorobenze	ne Q	%SS
79,6	1	U	1	TUT	1	[U[1	TUT	1	U	1	UT	1	U	2	U		U	1	U	1	U	1	U	87
89,6	1	U	1	U	1	U	1		1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	91
99.6	1	U	1	U	27		57		1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
119.6	1	U	1	U	1	U	1	U	1	U	1	υ	1	U	2	U	1	Ü	1	U	1	U	1	U	101
128.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U		U	1	U	1	U	90
139.6	1	U	1	U	1	U	1	U	1	U	1	υ	1	U	2	U	1	U	1	U	1	U	1	U	83
149.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	Ü	1	U	1	U	1	U	97
186.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	104
194.4	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	89
204.6	1	U	1	U	1	u	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	82
214.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	u	1	U	1	U		U	82
224.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	82
232,9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	80
244,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	97
260.9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	103
269.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	95
279.0	1 1	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	95
289,0	1	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	97
298.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	101
307.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
331.0	1	U	1	U	1	TUI	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	97
340.0	1	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	100
345.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	102
390.8	1	U	1	U	1	Tu	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	lu	1	U	99
399.2	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	Ų	1	U	1	U	1	U	102
406.6	1	TU	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	97

Hicksville, NY Location: Project ID: Groundwater Profiting

SEI #: 03-1402 1/5-1/24/2004 Date Sampled: Date Analyzed: 1/5-1/24/2004 1/24/2004 Report Date:

HOLE ID =P31			VOC D	ATA, ug/L				ı	NORGANIC DATA, mg/	L		COELUTING	COMPOUNDS
Depth	Vinyl Chloride	Q t-Dichloroethene	Q c-Dichloroethene	Q Trichloroethene	Q Tetrachloroethene C	2 % SS	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1.2-DCA / Benzene
79,3	1	U 1	U 1	U 1	U 1 U		0.08	0,21	0.22	86	0.06	1U	10
89.3	1		U 1	U 1	U 1 U	99	0.12	0.20	0.33	163	0.07	1U	10
99.3	1	U 1	U 1	U 1	U 1 I	93	0.18	0.60	0.58	160	0,13	10	10
111.7	1	U 1	U 1	U 1	U 1 I		0.16	0.89	0.44	116	0.07	1U	10
124.3	1 1	U 1	U 1	U 1	U 1 I	J 92	0.20	0.32	0.21	87	0.11	10	10
134.3	1	U 1	U 1	U 1	U 1 I	J 93	0.09	0.27	0.33	80	0.08	10	10
143.3	1 1	U 1	U 1	U 1	U 1 U	J 88	0.08	0.29	0.35	85	0.05	10	1U
184.3	1	U 1	U 1	U 1	U 1 I	J 104	ND	0.09	0.05	44	0.03	1U	1U
190,4	1	U 1	U 1	U 1	U 1 I	J 94	0.03	0,17	0.16	48	0,03	1U	1U
199,3	1	U 1	U 1	U 1	U 1 I	J 103	0.11	0.53	0.36	48	0.03	10	10
223,8	1	U 1		U 1	U 1		0.07	0.20	0.27	61	0.06	10	1U
233,1	1 1	1 1		U 1	U 1		ND	0.03	0.06	55	ND	10	1U
244.3	1			U 1		88	0.10	0.22	0.23	65	0.07	1U	1U
254.3	 		U i	u i		U 89	0,11	0.20	0.26	43	0,06	1U	10
263.7	1 1		Ul i	U 1		U 92	0.11	0.63	0.41	30	0.05	10	10
284.3	1 1		ŭl i	tut i		U 98	ND	0.05	0.08	18	0.02	10	10
294.3	1		ŭl i	lul 1		U 103	ND T	ND ND	0.04	41	0.02	10	1U
304.3	 		U 1	1 1		U 92	0.13	0.97	0.69	40	0.07	1U	10
344,3	 		ul i	l ŭl 1		U 103	0,24	0.54	0.28	30	0.08	1U	1U
351.6	1 1		ul i	U 1		U 105	0.07	0.86	0.11	21	0.14	1U	10
363,2	3		Ul 1	U i		U 90	0.12	0.33	0.29	25	0.08	10	1U
374.3	1 1		Ul 1	lul i		U 91	0.12	0.20	0.21	21	0.04	10	10
404.3	1 1		U 1	U 1		U 91	0.07	0.07	0.06	14	ND ND	10	10
414.3	1		U 1	U 1		U 85	0.03	0.39	0.71	17	ND 1	10	10
444.3	+		U 1	U 1		U 104	ND ND	0.39	0.08	10	0.03	10	10
451.4	 		U i	U 1		U 107	0.06	0.24	0.16	35	ND ND	10	10
Depth	Freon 123A	Q Freon 123	Q 1.1-Dichloroethane	Q 1.1.1-Trichloroethan	Q Toluene	Q Chilorobenzene		Q m.p-Xylene	Q o-Xylene	Q 1,3-Dichlorobenzen	Q 1,4-Dichlorobenzene		
79.3	1	U 1	U 1	U 1	U 1	U 1	U 1	U 2	U 1	U 1	U 1		U 93
89.3	1	U 1	U 1	U 1	U 1	U 1	U 1	U 2	U 1	U 1	U 1		U 99
99.3	1	U 1	U 1	U 1	U 1	U 1	U 1	U 2	U 1	U 1	U 1	U 1	U 93
111.7	1	U 1	1	U 1	U 1	U 1	U 1	U 2	U 1	10 1	U 1	U 1	U 93
124,3	1	U 1	U 1	U 1		U 1	U 1	U 2	U 1	U 1	U 1	U 2	U 92
134.3	1	U 1	U 1	U 1	U 1	U 1	U 1			U 1	U 1	U 1	U 93
143.3	1	U 1	0 1	111			U 1	U 2	U 1				111
184.3	1			U 1	U 1	U 1	U 1	U 2	U 1	Tu i		U 1	U 88
		10 1	U 1	U 1		U 1	U 1				U 1		U 104
190.4	1				U 1	U 1 U 1	U 1 U 1	U 2	U 1	Ū 1	U 1	U 1	
190.4	1	U 1	U 1	U 1	U 1 U 1	U 1 U 1 U 1	U 1 U 1 U 1	U 2 U 2	U 1 U 1	U 1 U 1	U 1 U 1 U 1	U 1 U 1	U 104
	1 1	U 1 U 1	U 1 U 1	U 1	U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 2 U 2 U 2	U 1 U 1 U 1	U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 1 U 1 U 1	U 104 U 94
199,3	1	U 1 U 1 U 1	U 1 U 1 U 1	U 1 U 1 U 1	U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 104 U 94 U 103
199,3 223.8	1 1	U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88			
199,3 223,8 233,1	1 1 1	U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88 U 82
199,3 223.8 233,1 244.3 254.3	1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88 U 82 U 88
199,3 223,8 233,1 244,3 254,3 263,7	1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U U 1 U U 1 U	U 104 U 94 U 103 U 88 U 82 U 82 U 88
199.3 223.8 233.1 244.3 254.3 263.7 284.3	1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88 U 82 U 88 U 89 U 92
199.3 223.8 233.1 244.3 254.3 263.7 284.3 294.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88 U 82 U 88 U 89 U 92 U 98
199.3 223.8 233.1 244.3 254.3 263.7 284.3 294.3 304.3	1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88 U 82 U 88 U 89 U 92 U 98 U 92 U 98
199.3 223.8 233.1 244.3 254.3 263.7 284.3 294.3 304.3 344.3	1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 103 U 88 U 82 U 89 U 92 U 98 U 92 U 98 U 98 U 92 U 98
199.3 223.8 233.1 244.3 254.3 263.7 294.3 304.3 344.3 351.6	1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 94 U 103 U 88 U 82 U 88 U 89 U 92 U 98 U 92 U 98 U 103 U 92 U 103 U 103 U 105
199.3 223.8 233.1 244.3 254.3 263.7 284.3 294.3 304.3 344.3 351.6 363.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 104 U 94 U 103 U 88 U 82 U 88 U 92 U 98 U 92 U 98 U 103 U 92 U 103 U 92 U 90 U
199.3 223.8 223.1 244.3 254.3 263.7 284.3 304.3 304.3 351.6 363.2 374.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 104 U 103 U 103 U 88 U 82 U 88 U 89 U 92 U 92 U 103 U 103 U 92 U 98 U 103 U 103 U 99 U 99 U 99
199.3 223.8 233.1 244.3 254.3 263.7 284.3 204.3 304.3 344.3 351.6 363.2 374.3 404.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1		U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 104 U 94 U 103 U 88 U 82 U 88 U 89 U 92 U 98 U 103 U 103 U 92 U 90 U 90 U 90 U 90 U 90 U 90 U 90 U 90
199.3 223.8 223.1 244.3 254.3 263.7 284.3 304.3 304.3 351.6 363.2 374.3 404.3 404.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 104 U 94 U 103 U 88 U 88 U 88 U 92 U 98 U 92 U 98 U 103 U 92 U 96 U 103 U 92 U 92 U 92 U 92 U 92 U 92 U 92 U 92
199.3 223.8 233.1 244.3 254.3 263.7 284.3 304.3 304.3 351.6 363.2 374.3 404.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1		U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	U 104 U 94 U 103 U 88 U 82 U 88 U 89 U 92 U 98 U 103 U 103 U 92 U 90 U 90 U 90 U 90 U 90 U 90 U 90 U 90

Preliminary Mobile Laboratory Results Sheet

Client: GTEOSI Hicksville, NY Location: Project ID: Groundwater Profiling SEI#: 03-1402 Date Sampled: 2/9-2/19/2004 Date Analyzed: 2/9-2/19/2004 2/19/2004 Report Date:

HOLE ID =P32													T						
					VOC	DATA	i, ug/L							li li	NORGANIC DATA, mg/l	_	l	COELUTING	COMPOUNDS
Depth	Vinyl Chloride												l .		· -		1	1.1-DCE / Freon	1
		Q	t-Dichlargethene	Q	c-Dichloroethene	Q	Trichlaroethene	Q	Tetrachloro	ethene C		SS	Fe ⁺²	Fe. Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
0,08	1	U	1	U	1	U	1	Ų	1	Ţ		76	0,04	0,15	0.12	132	0.04	10	10
89,4	1	U		U	1	U	1	U	1	l		76	0.03	0,08	0,09	194	0,06	10	10
99.4	1	U		U	1	U	1	U	1	t		14	0.14	0.42	0.34	276	0.10	10	10
109,4	1	U		U	1	U	1	U	1			36	0.16	0.45	0.34	66	0.12	10	10
119.4	1	U		u	1	U	1	U	1	Į.		10	0.23	0.49	0,51	67	0,12	1ປ	10
128.8	1	U	1 1	U	11	U	11	U	1	1		08	0.09	0.32	0,38	61	0,11	10	10
139.4	1	U	1	U	11	U	11	U	1			93	0.20	0.83	0.58	72	0.13	1U	10
174.4	1	U	1	U	1	U	1	U	1	Į.		10	0.36	1.99	0.68	57	0.11	10	1U
184.4	1	U	1	U	1	U	1	U	1	l		09	0.11	0.33	0.24	83	0.09	10	10
194,4	1	U	1	U	11	U	1	U	1		U] 9	92	0,10	0,44	0,27	80	0.10	1U	10
224,4	1	U	1	U	1	[U]	9			Į.		94	0.04	0.07	0.02	35	0.03	Detect	10
234.4	1	U	1	U	1	U	13	\perp	2			89	0.05	0.11	0.07	24	0,04	Detect	10
241.0	1	U		U	11	U	3	\perp	1			96	0.03	0.07	0.04	33	0.03	Detect	10
251.8	1	U		U	1	U	5	\perp	1			01	0,06	0,19	0.13	30	0.05	Detect	10
259,4	1	u	1	5	1	U	3		1			85	0.04	0,05	0,03	33	0,03	Detect	1U
269.4	11	U		U	1	U	3		1			97	0.03	0.12	0.12	25	0.03	Detect	10
279.4	1	Ų		J	1	U	2	\Box	1			98	0,16	0.51	0.36	25	0.06	Detect	10
289.4	1	U		U	1	U	1	u	1			10	ND	0.04	0,03	22	0.03	10	10
299.4	1	U		U	1	U	1	u	1			06	0.19	0.86	0,69	23	0,08	10	10
309.4	1	U		u	1	U	1	U	1			14	0,05	0.08	0.06	27	0.02	10	10
352.0	1	U		U	1	U	1	U	1			06	0.04	0.09	0.06	20	0.03	10	10
359,2	1	U		U	1	U	1	U	1			94	0.05	0,10	0.09	25	0.04	10	10
369.2	1	U	1	U	1	U	1	U	1			93	0.08	0.18	0.14	25	0.05	10	1U
379.3	1	U	1	U	1	U	1	U	1			97	0.10	0.36	0.26	20	0.10	10	1U
387.8	1	U	1	U	1	U	1	U	1			89	0.05	0.13	0.11	20	0.04	10	10
411,3	1	U	1	U	11	U	1	U	1			85	0.05	0.09	0.16	19	0.03	10	10
419,3	1	U	1	U	1	U	1	U	1		U	89	0.03	0.05	0.02	19	0.04	10	10
426.7	1	U	1	U	1	U	1	U	1			90	ND ND	0.07	0.02	17	0.02	10	10
460,9	1	U	1	U	1	U	1	U	1		U	88	0.07	0.16	0,06	15	0.04	10	10
481.0	1	U	1	U	1	U	1	U	1			87	0,09	0.13	0.07	12	0.04	10	10
488.9	1	U	1	U	1	U	1	U	1		Ų .	84	0.03	0,03	0.08	11	0.03	10	10

	1								VOC DATA, ug/L												
<u>Depth</u>	Freon 123A	Q Freon 123		ne Q 1.1.1-Trichtoroe	thane Q		Q Chlorobena	ene Q	Ethylbenzene	Q	m_p-Xylene	Q			3-Dichlorobenzene				2-Dichlorobenzer		%SS
80,0	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	U	76
89,4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	11	U	76
99,4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U		U	1	U	1	U	1	U	114
109.4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	U U U	86
119,4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	110
128,8	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U		U		U	1	U	1 1	101	108
139.4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U		U		U	1	Ų	1	U	93
174.4	1	U 1	U 1	U 1	U	1	U 1	υ		U	2	U		U		U	1	U	1	U	110
184.4	1	U 1	U 1	U 1	U	1	U 1	υ		U	2	U		U		U	1	U	1	U	109
194.4	1	U 1	0 1	U 1	U	1	U 1	U	1	U	2	U		U		U	1	U	11	U	92
224.4	1	U 1	U 3	2		1	U 1	υ	1	U	2	U	1	U	1	Ü	1	U	1	U	94
234,4	1	U 1	U 3	2		1	U 1	U	1	U	2	U	1	U		U	1	U	1	U	89
241.0	1	U 1	U 3	1	U	1	Ü 1	U	1	U	2	U	1	U		U	1	U	1		96
251.8	1	U 1	U 4	1		1	U 1	U	1	U	2	U	1	U		U	1	U	1	U	101
259.4	1	U 1	U 5	3		1	U 1	Ü	1	U	2	U	1	U		U	1	U	1	U	85
269,4	1	U 1	U 2	1	U	1	U 1	U	1	U	2	U	1	U		U	1	U	1	U	97
279,4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
289.4	1	U 1	U 1	U 1	u	1	U 1	U	1	U	2	U	1	U		U	1	U	1	U	110
299,4	1	U 1	0 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	106
309,4	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U		U	1	U	1	U U	114
352.0	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U		U	1	U	1	U	106
359.2	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U		U	1	U	1	U	94
369,2	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	Ų		U	1	U	1	U	93
379,3	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	97
387,8	1	u 1	U 1	U 1	U	1	U 1	U	1 1	U	2	U	1	U		U	1	U	1	U	89
411.3	1	U 1	U 1	U 1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	85
419.3	1	U 1	U 1	U 1	u	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	89
426.7	1	U 1	U 1	U 1	U	1	U 1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	90
460,9	1 1	UI 1	U 1	U 1	u	1	U 1	Ū	1	U	2	U	1	U	1	U	1	U	1	U	88
481.0	1	U 1	U 1	U 1	U	1	U 1	U		U	2	U	1	U	1	U	1	U	1	U	87
488.9	1 1	U 1	Ū 1	10 1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	84

lient: GTEOSI Hicksville, NY ocation: Groundwater Profiling Project ID: 03-1402 SEI #: Date Sampled: 12/05-12/15/2003 Date Analyzed: Report Date: 12/05-12/15/2003 12/15/2003

HOLE ID =P33					***************************************													
	16-4 OH-44-				Voc D	ATA	ug/L						ı	INORGANIC DATA, mg/L	-		COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride	Q :	t-Dichforoethene	Q	c-Dichloroethene	Q	Trichloroethene	Q	Tetrachloroethene	Q	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freon 113	1,2-DCA / Benzene
79.6	1	U	1	U	1	U	1	U	1	U	82	0.04	0.17	0.11	825	0.05	10	10
89,6	1	U	1	U	1	U	1	U	1	U	84	0.05	0.39	0,25	1320	0,07	10	10
99.6	1	U	1	U	1	U	1	U		U	94	0.09	0.53	0,39	233	0,16	1U	10
109,6	1	U	1	U	1	U	1	U	1	U	93	0.04	0.22	0.14	365	0.08	10	10
119.6	1	U	1	U	1	U	1	U	1	U	89	0.16	0.57	0.51	302	0.15	10	10
129.6	1	U	1	U	1	U	1	U	1	10	97	0,05	0,19	0,09	438	0.05	10	10
139.6	1	U	1	U	1	U	1	Ų	1	U	95	0,03	0,19	0.15	570	0.06	10	10
149.6	1	U	1	u	1	U	1	U	1	U	93	0,07	0.23	0.16	568	0.05	10	10
159.6	1	U	1	U	1	U	1	U	1	U	89	0.04	0.19	0.11	450	0.06	Detect	10
169.6	1	U	1	U	1	U	1	7	1	U	91	0,04	0.08	0.05	84	0.06	Detect	10
179.6	1	U	1	U	1	U	1	U	1	U	91	ND	0.08	0.05	221	0.05	Detect	10
189,6	1	U		U	1	U	1	U	1	U	92	0.03	0.13	0,11	233	0,05	Detect	10
198.1	1	U		U	1	U	1	U	1	U	89	ND	0.07	0.04	302	0.04	Detect	10
214.6	1	U	1	U	1	IUI	1	Tu	1	U	86	0.73	1.63	0.30	490	0.33	10	1U
224.6	1	U	1	U	1	U	1	U	1	U	104	0.08	0.19	0.05	795	0.03	10	10
234.6	2	UJ	1	U	1	U	1	U	1	U	101	ND	0.09	0,02	1170	0,03	1υ	10
244.6	5	J	1	U	1	U	1	U	1	U	104	0.24	0.37	0.03	1650	0.19	10	10
254.6	5	J	1	u	1	U	1	U	1	U	100	ND	0.12	0.04	1775	0.03	10	10
264,6	1	U	1	U	1	U	1	U	1	U	99	0,16	0,63	0,54	980	0.05	10	10
274.6	1	U	1	U	1	U	1	U	1	U	101	ND	ND	0.05	990	ND	1U	10
284.6	1	U	1	U	1	U	1	U	1	U	104	0.14	0.18	0.37	22	0.05	10	10
294.6	1	U	1	U	1	u	1	U	1	U	102	ND	ND	0.04	16	0.02	10	1U
304.6	1	U	1	U	1	u	1	U	1	U	98	0.07	0.16	0.17	31	0.09	10	10
344,3	1	U	1	U	1	U	1	U	1	U	91	0.93	1.20	0.22	18	0,03	10	10
374.3	1	U	1	u	1	U	1	V	1	u	97	0,06	0,21	0,08	21	0.05	10	10
412.4	1	U	1	U	1	U	1	U	1	U	99	0.05	0.13	0.05	13	0.02	1U	10
423.8	2	T	1	u	1	IU	1	U	1 1	U	94	0.09	0,14	0.15	13	0.07	10	10
432.6	2	11	1	U	1	U	1	Ü	1	U	93	ND	0.10	ND	10	0.02	1U	1Ü
454,3	1	U	1	U	1	U	1	U	1 1	U	103	0.51	1,45	0.24	11	0.24	10	10
481.1	1	U	1	U	1	U	1	Ü	1	U	113	0.08	0,26	0,09	11	0.04	10	10

										VOC DATA, ug/L												
Depth	Freon 123A	Q Freon 123	Q 1.1-Dichlo			ethane Q	- Company of the Comp	Q Chloroben		Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene		3-Dichlorobenzene (%SS
79.6		U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	U	82
89.6		0 1	U 1	Ü	1	U	1	U 1	U	1	U	2	U	11	U	1 1	U	1	U	1	U	84
99,6		U 1	[U] 1	U	1	U		U 1	U	1	U	2	U	1	U	1 1		1	U	1	U	94
109.6	1	U 1	U 1	U	1	U		U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	U	93
119,6		U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1 1	Ü	1	U		U	89
129.6		บ 1	U 1	U	1	U	1	U 1	U	1	U		U	1	U	1 1	U	1	U	1	U	97
139.6	1	U 1	U 1	U	1	U	11	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	95
149.6	1	U 1	U 1	U	1	U		U 1	U		U	2	U	1	U	1 1	U	1	U	1	u	93
159.6	1	U 1	U 1	U	1		1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	89
169.6		U 1	U 5	,	5			U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	Ü	91
179,6		U 1	U 2	!	2		1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	U	91
189.6		U 1	U 1		2		1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	Ü	92
198.1	1	U 1	U 2	2	2			U 1	Ų	1	U	2	U	1	U	1	U	1	U	1	U	89
214,6	1	U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	Ü	86
224.6	1	U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	104
234.6	1	U 1	U 1	U	1 1	U	1	U 1	U	1	U	2	U	1	U	1 1	U	1	U	1	U	101
244,6	1	U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1	U		U	1	U	104
254.6	1	U 1 U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1	Ü	1	U	1	U	100
264.6	1	U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	99
274.6	1	U 1	U 1	Ü	1	U	1	U 1	U	1	U	2	U	1	U	1	U	1	U	1	U	101
284.6		U 1	U 1	Ü	1 1	U	1	U 1	U	1	U	2	U	1	U	1 1	Ü	1	U	1	Ü	104
294.6	1	U 1	U 1	U	1	U	1	U 1	Ü	1	υ	2	U	1	U	1	U	1	U	1	U	102
304.6	1 1 1	υ 1	U 1	ı U	1	U	1	U 1	U	1	U	2	U	1	U	1	Ū U	1	U	1	Ü	98
344.3	1	U 1	U 1	U	1	U	1	U 1	U	1	U	2	U	1	U	1	U U	1	U	1	U	91
374.3		U 1	U 1	i lu	1	Ū		ul 1	Ū	1	U	2	Ū	1	u	1	ut	1	U	1	u	97
412.4		U 1	[U] 1	ı Ü	1	Ū	1	Ül 1	Ü	1 1	U	2	ū	1	U	1	ut	1	U	1	Ü	99
423.8	1	U 1	101 1	i lù	1	tul	1	U 1	U	1 1	U	2	tút	1	U	1	ŭ!	1	u	1	ΙŪ	94
432.6	1	U 1	10/ 1	l U	1	U	1	U 1	Tu	1 1	ul	2	U	1	U	1	U	1	Ü	1	ű	93
454.3		Ū 1	U 1	ı lü	1 1	Ü		U 1	Ū		U -	2	Tu -	1	lu -	1 1	ul	1	Ŭ	1	11	103
481.1	1	U 1	U 1	i ti	1	Ü		U 1	Ū		UT-		Ū	1	lū	1	Ū I		Ü	1	U	113
	<u> </u>		1-1				1						1	<u>-</u>	1		<u> </u>	·			1-1	

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %5S = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

Client: GTEOSI Hicksville, NY Location: Project ID: Groundwater Profiling 03-1402 SEI#: Date Sampled: 11/21-12/03/2003 Date Analyzed: 11/21-12/03/2003

12/3/2003

Report Date:

HOLE ID =P34													I						
Depth	VOC DATA, ug/L Vinyl Chloride Q 1-Dichloroethene Q c-Dichloroethene Q Trichloroethene Q Tetrachloroethene Q % SS													Ji	COELUTING COMPOUNDS 1,1-DCE / Freon				
***		Q	t-Dichloroethene C	<u>)</u> ¢	-Dichloraethene	<u>Q</u>	Trichloroe	thene	Q Tetra	schloroethene		% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79.6	1	U	1	1	11	U	11		U	1	U	91	0.08	0.26	0.11	111	0.02	1U	10
89.6	1	U	1 (_	1	U	1		U	1	U	94	0.19	0.39	0.10	146	0,04	10	10
99.6	1	U	1 (11	JU	1_		U	1	U	88	0.16	0.40	0.05	32	ND	10	10
109,6	1	U	1 [1	1	U	111		U	1	U	83	0.22	0.51	0.54	72	0.09	1U	10
119.6	1	U.	1 [J	1	U	1_		U	1	U	89	0.15	0.67	0.42	146	0.04	10	1U
129.6	1	U.	1 (1	1	U	1		U	1	U	91	0.05	0.27	0.12	42	0.03	10	1U
139.6	1	υT	1 (1	10	1		U	1	U	84	0.04	0.16	0.07	67	0.02	1U	10
154.6	1	U	1 L	J L	1	U	1		Ų	1	U	88	0.03	0.10	0.03	59	0.03	10	1U
164.6	1	U	1 (1	U	1		U	1	U	89	0.05	0.07	0.04	65	0,02	1U	1U
174.6	1	U	1 (J	1	U	1		U	1	U	100	0.04	0.12	0.10	75	0.03	10	1U
184.6	1	U	1 (J	1	U	1		U	1	U	102	0.04	0,14	0.10	72	0.03	10	1U
194.6	1	U	1 (1	1	U	1		U	1	U	94	0.03	0.07	0.04	76	0.02	1U	10
204.6	1	U	1 (J	1	TU	2			1	U	89	ND	0,11	0.09	74	0.03	1U	10
214.6	1	U	1 (J	1	U	1			1	U	84	0.05	0,11	0.09	75	0.04	1U	10
224.6	1	U	1 1	J	1	U	3			1	\top	94	0.03	0.05	0.03	57	0.02	Detect	10
234.6	1	U	1 (1	U	2			2		99	0.04	0.10	0.06	31	ND	Detect	1U
244.6	1	U	1 1		1	U	2		1	2	11	92	0.05	0.09	0.08	27	ND	Detect	1U
254.6	1	U	1 (1	1	U	5			1	11	102	0.04	0.07	0.05	31	0.02	Detect	10
264,6	1	U	1 (ار	1	U	3			1	77	106	0.05	0.22	0.12	30	0.05	Detect	1U
284.6	1	U	1 1	7	1	TU	13		1	1	11	92	0,24	1,45	0.27	34	0.11	Detect	1U
294,6	1	U	1 (J	1	U	15			2		101	0.26	0.58	0.15	36	0.11	Detect	10
304.5	1	U	1 (1	1	U	10			1	\top	96	0,05	0,10	0.04	35	0.02	Detect	10
324.5	1	U	1 (ار	1	Tul	12			1	\top	85	ND	0.08	0.02	40	0.02	Detect	10
334.5	1	U	1 (U	1	U	6			1	U	87	ND	ND	ND	33	0,02	Detect	10
352,7	1	U	1 1	J	1	U	1		U	1	U	114	0,05	0,11	0.08	23	0.02	1U	10
384.4	1	U	1	J	1	U	1		U	1	U	76	ND	0.06	0.02	14	ND	10	10
394,6	1 1	U	1 1	ال	1	Ü	1		U	1	U	77	ND	0.04	0.13	22	0.03	10	1U
401.6	1	U	1 1	U	1	U	1		U	1	U	80	0.05	0.08	0.13	25	0.04	10	10

		-										VOC DAT	A. ua/L											
Depth	Freon 123A	Q	Freon 123 C	2 1.1-	-Dichloroethane	Q 1.	1,1-Trichloroethane	Q	Toluene	Q	Chlorobenzene C			Ω	m.p-Xylene	Q	o-Xylene	Q 1.3	-Dichlorobenzene Q	1.4-Dichloroben	zene !	2 1,2-Dichlorob	enzene Q	%SS
79.6	1	U	1 L	J	1	U	1	U	1	U	1 L	1		U	2	U	1	TUI	1 U	1	T	J 1	U	91
89,6	1	U	1 L	J	1	U		U	1	U	1 U	1		U	2	U	1	U	1 U	1		ال 1	U	94
99,6	1	U	1 L	J	1	U	1	U	1	U	1 0	1		U	2	U	1	U	1 U	1		J 1	U	 88
109,6	1	U	1 1	J	1	U	1	U	1	U	1 0	1		U	2	U	1	Ų	1 U	1		U 1	U	 83
119,6	1	U	1 [J	1	U	1	U	1	U	1 6	1		U	2	U	1	U	1 U	1		U 1	U	 89
129.6	1	U	1 1	J	1	U	1	U	1	U	1 4	1		U	2	U	1	U	1 U	1		U 1	U	 91
139,6		U	1 L	J	1	U	1	U	1	U	1 L	1		U	2	U	1	U	1 U	1	1	U 1	U	 84
154,6	1	U	1 1	J	1	U	1	U	1	U	1 4	1		U	2	U	1	U	1 U	1		J 1	U	88
164.6	1	U	1 L	J	1	U	1	U	1	U	1 [1		U	2	U	1	U	1 U	1		U 1	U	89
174.6	1	U	. 1 L	U	1	U	1	U	1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	 100
184.6	1	U	1 (1	U	1	U	1	U	1 L	1		U	2	U	1	U	1 U	1		U 1	U	102
194.6	1	U	1 L	Ü	1	U	1	U	1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	 94
204,6	1	U	1 L	U	1	U	1	U	1	U	1 1	1		U	2	TUI	1	U	1 U	1		U 1	U	 89
214.6	1	U	1 L	U	1	U	1	U	1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	 84
224.6	1	U	1 L	U	1	U	1		1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	 94
234,6	1	U	1 L	U	1	U	2		1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	99
244.6	1	U	1 L	U	2		3		1	U	1 1	1		U	2	U	1	U	1 U	1		U 1	U	 92
254.6	1	U	1 L	U	3	7	4		1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	 102
264.6	1	U	1 \	U	3	1	4		1	U	1 1	1		U	2	U	1	U	1 U	1		U 1	U	 106
284.6	1	U	1 [U	7		7	П	1	Ü	1 (1		U	2	U	1	U	1 U	1		U 1	U	 92
294.6	1	U	1 (u	6	1	8		1	U	1 (1		U	2	U	1	Tu	1 U	1		U 1	U	101
304.5	1	U	1 1	U	7	1	7		1	U	1 [1		U	2	U	1	U	1 U	1		U 1	U	 96
324.5	1	U	1 (U	5		7		1	U	1 1	1		U	2	Ū	1	U	1 U	1		U 1	U	 85
334.5	1	U	1 (U	6		4		1	U	1 1	1		U	2	U	1	U	1 U	1		U 1	U	 87
352,7	1	U	1 (U	1	U	1	U	1	U	1 1	1		U	2	U	1	U	1 U	1		U 1	U	 114
384.4		U	1 (U	1	U	1	U	1	U	1 1	1		U	2	U	1	Tu	1 U	1		U 1	U	76
394,6	1	U	1 (U	1	U	1	U	1	U	1 (1		U	2	U	1	U	1 U	1		U 1	U	 77
401.6	1	U	1 (Ü	1	ul	1	U	1	ΙŪ	1 1	1		TO!	2	Ū	1	tūl -	1 U	1	-	Ū i	- tüt	 80

Client: Hicksville, NY Location: Project ID: Groundwater Profiling 03-1402 SEI #:

Date Sampled: 7/9 - 7/14/03 Date Analyzed: 7/9 - 7/14/03 Report Date: 7/14/03

HOLE ID = P35																		
Depth	Vinyl Chloride				voc	DATA	, ug/L						1	INORGANIC DATA, mg/l	-		COELUTING 1,1-DCE / Freen	COMPOUNDS
- Enem	11111 3111130	Q	t-Dichloroethene	Q	c-Dichloroethene	Q	Trichloroethene	Q	Tetrachloroethene	2	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
77.2	1	U	1	TU	1	U	1	TUI	10	TT	95	0.04	0.09	0,02	21	ND	1 U	10
87.2	1	U	1	U	1	U	1	U	7		101	ND	0.07	0.04	14	0.04	1 U	1 U
97.2	1	U	1	U	1	U	1	U	11		89	ND	0.11	0,11	16	0.03	10	1 U
107.2	1	U	1	U	1	U	1	U	1	U	106	NS	NS	NS	NA	NS	1 U	1 U
117.2	1	U	1	U	1	U	1	U	4		110	ND	0.54	0.10	43	0.03	10	10
127.2	1	U		U	1	U	20	П	1	U	107	ND	0.05	0.05	75	0.02	10	1 U
137.2	1	U	1	U	9		97		5	1	118	0.03	0.08	0.07	51	0.03	10	10
147.2	1	U	1	U	12		110		1	\top	101	0.03	0.12	0,06	65	ND	10	10
157.2	1	U	1	U	18		100		20		113	ND	0.19	0,05	100	ND	10	1 U
167.2	4	U	4	U	27	П	400	П	6	\Box	107	0.06	0.12	0,11	62	0.02	4 U	4 U
177.2	1	U	1	U	12		110		2		102	ND	0,05	0,09	169	0.02	1 U	10
187.2	1	U	1	U	5		37	П	1	U	115	0.16	0.38	0.30	197	0.1	1 U	1 U
197.2	1	U	1	U	4		51		1		108	ND	0.04	0.10	255	ND	1 U	10
207.2	1	U	1	U	2		36	П	1	U	118	ND	0.06	0.07	94	0.02	1 U	10
217.2	1	U	11	U	5		62	T	1		94	0.16	0.39	0,25	57	0.09	1 U	1 U
227.2	1	U	1	U	1	U	2		1	U		0.04	0.10	0,10	43	0.02	1 U	1 U
237.2	1	U	1	U	1	U	1	II	1	U	110	ND	0.10	0.04	107	ND	1 U	10
247.2	1	U	1	U	1	U	1	U	1	U	113	0.04	0.08	0,10	96	0.02	1 U	1 U
257.2	1	U	11	U	1	U	1	U	1	U		ND	ND	0.04	94	ND	10	1 U
267.2	1	U	1	U	11	U	1	U	1	U		0.03	0.08	0,08	93	ND	10	10
277.2	1 1	U	1	U	1	U	1	U	1	U		ND	0,06	0,09	72	0,03	10	10
292.2	111	U	11	U	11	U	1	U	1	U		0.40	2,40	0,50	370	0.3	10	10
322.2	11	U	11	U	11	U	1	U	1	U		0.03	0,09	0,11	447	0,04	1 U	1 U
332.2	1	U	1	U	11	U	111	U	11		109	0.14	0,26	0.40	402	0.05	10	1 U
342.2	11	(U)	11	U	1	U	1	10	2		107	ND	0,22	0,11	443	0.05	10	1 U
347.2	111	U	11	U	11	U	1	U	1	U	103	1.60	50.80	7.00	59	0,4	1 U	10

													VOC DATA													
Donth	F 120A	0	Freon 123		a a Diables of the con-	0.	a a Walati constitue	- 0	T-1.	_	0.1	_	VOC DATA, ug/L	0							District contracts		District			%SS
<u>Depth</u> 77.2	Freori 123A	TÜT		ŬΤ	1,1-Dichloroethane	<u> </u>	1, 1-1 richtoroethan	<u>eu</u>	Toluene	- 121	Chlorobenzene			2	m.p-Xylene	- 131	o-Xylene		1,3-Dichlorobenzen		-LACINOTODERZE		-Dichlorop			95
87.2		-		해		V.		191		U		ļυ		U	2	U			1 1	U		U		U		
97.2		10			1	U.		101-		[0]		ĮU	1	UI.	2	U	1		1	U		U		U	-	101
107.2	 	U		U		니니		141	1	U	3	U	1	U		U			1	U		U		U		106
	1	U		U	3	141		U		U	1	10	1	U	2	- U	11		1	U	1	U	1	U		
117.2	1 1	U	1	낒		U.	1	낸	1	U	1	U	<u> </u>	U	<u>2</u>	U	1		1	101	1	U		ĮŪ.		110
127.2	 	U		U	1	V.	1	101		U		10	1 1	U	2	U	1		1	U	1	U		U		107
137.2	1	U		U	1	U	1	10	1	U	1	ļυ	111	U	2	U	1	!	1 1	10	1	10	1	Į U		118
147.2	1	U	1 1	니	1	U	11	U	11	U	1	U	1	U	2	U	1		1 1	U	1	U	1	U		101
157.2	 	U		U		U	1	14	11	U	1	U	1	U	2	U	1		1 1	10	1	U		U		113
167.2	4	U	4	U	4	U	4	U	4	U	4	10	4 (U	8	U	4		4	101	4	U	4	U		107
177.2	11	U	1	UI.	11	U	11	101	11	U	1	10	1	U	2	U	1		1 1	U	1	IU	1	U		102
187.2	11	U	1	U		U	11	IUI	11	U	1	U		U		U	1			U	1	U	1	U		115
197.2	1	U	1	U	1	U	1	U	1	Ų	11	U	1 1	U	2	U	1		J 1	U	1	U	1_	U		108
207.2	11	U	1	U	11	U	1	101	1	U	1	U	1 1	U	2	U	1		J 1	U	1	U	1	<u> U</u>		118
217.2	1 1	U	1	U	11	U	1	U	11	U	1	U		U	2	U	1		J 1	U	1	U	1	U		94
227.2	1	IU	1	U	11	U	11	U	1	Ų	1	U		U	2	U	1		1 ا	U	1	U	1	U		110
237.2	1	U	11	U	11	U	1	U	11	U	1	U		U	2	U	1		J 1	U	1	U	1	U		110
247.2	1	U	1	U	1	U	1	U	1	U	11	Ų		U	2	U	1		J 1	U	1	U	1	U		113
257.2	11	U	11	U	1	U	11	U	11	U	1	U	1	U	2	U	1		J 1	U	1	U	1	U		92
267.2	1	U	11	U	11	U	1	U	1	U	1	U		U	2	U	1		J 1	U	1	_ U	1	U		110
277.2	1	U	1	U	111	U	1	U	1	U	1	Ū	1	U	2	U	1		J 1	U	1	U	1	U		104
292.2	1	U	1	U	1	U	1	[U]	1	U	1	U	1	U	2	U	1		J 1	U	1	U	1	U]	93
322.2	1	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1		J 1	U	1	U	1	U		104
332.2	1	U	1	U	11	U	1	U	1	U	1	U	1	U	2	U	1		J 1	U	1	U	1	U		109
342.2	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1		J 1	U	1	U	1	U		107
347.2	1	U	1	U	1	U	1	U	1	U	1	TU	1 1	U	2	U	1		1	U	1	Tu	1	U	I	103

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery
U = Undetected below the specified reporting limit.
J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled

Location: Hicksville, NY Project ID: Groundwater Profiling SEI#: 03-1402

8/18 - 8/26/03 Date Sampled: Date Analyzed: 8/19 - 8/26/03 Report Date: 8/26/2003

HOLE ID =P36	I																
G	15.4011.54			VOC D	ATA,	ug/L						1	NORGANIC DATA, mg/L				COMPOUNDS
Depth	Vinyl Chloride	Q t-Dichloroeth	A	c-Dichlorgethene	0	Triableseethone	О Т		Q %SS	.	Fe ⁺²	Fe. Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freon 113	1,2-DCA / Benzene
Equip. Blank	1	UI 1	III	C-Dichidroemene	ă	1 Inchioroemene	\(\)		U 118			re, rotal	Allimonia	Chionde	Critotine, rotal	10	1U
76.7	 	U 1		1	iil-	3	-	· · · · · · · · · · · · · · · · · · ·	121		0.16	0.53	0.23	106	0.10	10	10
86.7	1 1	tul i	Ιŭ	1	ü	20	-	20	119		ND ND	0.52	0.15	40	0.02	10	1U
96.7	20	U 20	- tů		<u> </u>	240		210	119		0.64	1.91	0.60	50	0.02	200	200
106.7	20	U 20	- lü			740		580	119		3.70	4.5	0.32	53	0.06	20U	200
116.7	2	U 2	- iii	37		120		64	122		7.00	7.2	0.32	66	0.00	2U	2U
126.7	2	U 2	- lü	46	-	85		64	117		23.90	25.1	0.24	66	ND ND	2U	2U
136.7	1 1	U 1		33	-	32	-	23	114		3.70	5.2	0.06	36	ND ND	Detect	10
146.7	2	U 2	10	2	11	18	+	120	119		13.80	16.6	0.58	45	0.02	2U	2U
156.7	5	U 5	10	5	111	69	_	410	101		14.70	16.7	0.70	9	ND ND	5U	5U
166.7	5	U 5	10	5	10	52	-	430	101		3,50	6.4	0.58	23	0.05	5U	5U
176.7	5	U 5	111	5	111	240	+	310	106		0.25	3.8	11	44	0.11	5U	5U
186.7	5	U 5	Ū	5	ū	9	+	530	107		0.34	1.56	0.30	120	0.03	5U	5U
196.7	2	10 2	- 10	7	ŭl-	2	13	180	92		0.33	1.23	0.70	122	0.08	2U	2U
206.7	1 1	lu 1	- lũ	1 1	ŭ		ul-	43	100		0.08	0.11	0.22	146	0.03	1Ŭ	1U
216.7	1	U 1	Ü	1	Ū.	1 1	Ū	2	107		0.10	0.79	0.25	182	0.05	1U	1U
226.7	1	U 1	U	1	U	1	U	11	111		0.13	1.06	0.20	268	0.07	10	10
236.7	1	U 1	U	1	u	1	Ū	1	U 92		0,04	0.23	0.11	316	0.03	1U	1U
266.8	1	U 1	U	1	U	12	-	11	102		ND	0.04	0.04	428	ND	1U	10
282.0	2	U 2	U	3		190	1	2	U 98		0,05	0,11	0,05	121	ND	Detect	2U
292.4	3	U 3	U	3	U	51	_	290	99		ND	0.03	0.07	613	0.06	3U	3U
328.4	1	U 1	U	1 1	U	16		65	97		0,10	0.22	0,25	710	0.06	10	1U
371.3	1	U 1	U	1	U	1	U	5	100		0.32	0.66	0.14	159	0.03	10	1U
475.2	1	U 1	U	1	U	1	U	1	U 104		0.07	0.67	0.17	53	0.03	10	1U

	T																								
													VOC DATA, ug/L												
Depth	Freon 123A	Q Free	on 123	1.1-	Dichloroethane	91	1.1-Trichloroetha	ne Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q 1.3	3-Dichlorobenzene	913	1-Dichlorobenzene	Q 1,2-D	chlorobenzen	<u>e Q</u>	%SS
Equip. Blank	1	U	1 (J.	1	U	1	U	1	U		ÜΤ	1	U	2	U		U	1	u	1	U	1	U	118
76.7	1	U	1	J	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	121
86,7	1	U	1 1	J	1	U	11	U	1	U		U	1	U	2	U	1	lu	1	U	1	U	1	U	119
96.7	20	U	20 ا	J	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	1400	T	119
106,7	20	U	20 (J	20	U	20	U	20	U	20	Ü	150		220	\Box	330		45		40		5000		119
116.7	2	0	2 l		2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	24		122
126.7	2	U	2 L	J	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	15		117
136,7	1	U	1 ()	10	П	1	U	1	U	1	ūΤ	1	U	2	U	1	U	1	U	1	U	9		114
146.7	2	U	2 L	J	4		2	U	2	U	2	Ū	2	U	4	U	2	U	2	U	2	u	6		119
156,7	5	U	5	1	5	U	5	U	5	U	5	U	5	U	10	U	5	U	5	U	5	U	5	U	101
166.7	5	U	5 L	J	5	U	5	U	5	U	5	U	5	U	10	Ü	5	U	5	U	5	U	5	U	101
176.7	5	U	5 (7	5	U	5	U	5	U	5	U	5	U	10	U	5	U	5	U	5	U	5	U	106
186.7	5	U	5 l	ال	5	U	5	U	5	U		U	5	U	10	U	5	U	5	U	5	U	5	U	107
196,7	2	U	2 (ال	2	U	2	U	2	U	2	Ū	2	U	4	U	2	U	2	U	2	U	2	U	92
206.7	1	U	1 1	ال	11	U	11	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1		100
216.7	1 1	U	1 (J	1	U	11	U	1	Įυ	1	U	1	U	2	101	1	U	1	U	1 1	U	11		107
226.7	1 1	U	1	7	11	U	1	U	1	U	1	U		U	2	U	1	U	1	U	1	U	2		111
236.7	1 1	U	1 1	ال	1	U	1	U	1	υ	1	U	1	U	2	U	11	U	1	U	1	U	1		92
266.8	1	U	1 1	1	1	U	1	U	1	U	1	U		U	2	U	11	U	1	U		U	11	U	102
282.0	2	U	2 1	1	2	U	2	U	2	U		υ	2	U	4	U	2	U	2	U	2	U	2	U	98
292.4	3	U	3 (1	3	U	3	U	3	U		U	3	U	6	U	3	U	3	U	3	U	3	U	99
328.4	1 1	U	1 1	ال	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	97
371.3	11	U	1 1	1	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	u	1	U]	1	U	100
475.2	1	U	1 1	J	1	U	1	U	1	U	1	υT	1	U	2	U	1	U	1	U	1	U	1	U	104

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery U = Undetected below the specified reporting limit.

J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled

8/19 - 8/27/03

8/27/2003

Mobile Laboratory Results Sheet

Location: Hicksville, NY Project ID: Groundwater Profiling SEL#: 8/19 - 8/27/03 Date Sampled:

Date Analyzed:

Report Date:

HOLE ID =P37	T													····				
					VOC D	ATA	, ug/L						11	NORGANIC DATA, mg/L	_		COELUTING	COMPOUNDS
Depth	Vinyl Chloride						-				1					1	1.1-DCE / Freon	
		Q t-	Dichloroethene C	2 9	c-Dichloraethene	Q	Trichlorgethene	QΙ	etrachloroethene C	% SS	ı	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79.3	1	U	1 1	T	1	U	1	U	1 (118		ND	0,15	0.04	16	ND	10	1U
90,0	1	U	1 (U	1	U	1	U	15	120		4.40	11.0	0.42	24	ND	1U	1U
100,0	2	U	2	U	2	U	2	U	220	116		0.16	0.59	0.19	18	ND	2U	2U
110.0	2	U	2	U	2	U	2	U	220	105		1,28	1,50	0.20	34	ND	2U	2U
120.0	1	U	1 1	U	1	Ü	24		30	115		0.41	0.64	0.15	40	0.02	1U	10
130.0	1	U	1 (U	1	U	37	\top	13	109		0,18	0,27	1.0	40	ND	10	10
140.0	1	U	1 (U	1	Ü	29		5	110		10.90	12.1	1,4	46	ND	1U	1U
150.0	1	U	1 (U	1	U	11		27	111		33,20	41.2	1.8	65	ND	10	1U
160,0	1	U	1 L	U	1	U	8		110	116		0.24	0.27	2.8	45	ND	1U	10
170.0	1	U	1 1	U	1	U	6		5	101		0.22	1.45	0.40	106	0.03	10	1U
180,0	1	U	1		1	U	4	\perp	2	108		4.10	5.8	0.80	111	0.05	1U	10
190.0	1	U	1 1	U	1	U	1		11	108		2.60	4.0	4,5	130	0.02	10	10
224.6	1	U	1 1	UL	11	U	6		9	107		0.21	1,30	2.6	218	0.18	1U	10
264.9	11	U	1 1	U	1	U	2		3	102		0.10	1,31	0.13	182	0.07	1U	10
274.9	111	U	1	U	1	U	4		7	103		ND	0.24	0.09	210	0.04	1U	10
284.4	12	U	12 l	U	12	U	520		1100	104		0.05	0.20	0.08	250	ND ND	12U	12U
304.8	2	U	2 (U	2	U	120		83	102		0.44	1,82	0.70	193	0.24	2U	2U
314.8	1	U	1 1	U	11	U	49	\perp	36	96		ND	0.10	0.06	128	ND ND	10	10
324.8	1	U	1 1	U	1	U	1		3	105		0.07	0.17	0.21	55	0.05	1U	10
333.2	11	U	1 1	U	1	U	1	U	2	101		ND	0.24	0.13	103	ND	1U	10
356,2	11	U	1 1	U.	1	U	2	1	14	105	\perp	0.12	0.47	0.32	224	0,08	10	10
385,0	1 1	U	1 (U	1	U	1	U	1 (ND ND	0.04	0.03	30	0.05	10	10
394.5	1 1	U	1 1	U	1	10	1	U	1 (101		0.15	0.80	0.20	24	0.07	10	1U

	<u> </u>											_													
													VOC DATA, ug/L												
Depth	Freon 123A	Ω	Freon 123	Q ;	1.1-Dichloroethane	91	1,1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xvlene	Q	o-Xylene	91	3-Dichlorobenzene	9 13	-Dichlorobenzene	Q 1.2-(Dichlorobenzen	e Q	%SS
79.3	1	U	1	U	1	U	1	U	1	Ü	1	ŪΤ	1	U	2	U	1	U	1	U	1	U	1	U	118
90.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	120
100.0	2	U	2	U	2	U	2	U	2	U	2 [U	2	U	4	U	2	U	2	U	2	U	2	U	116
110.0	2	U	2	U	2	U	2	U	2	U	2	U	2	U	4	U	2	U	3		2	U	2	U	105
120,0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	Tul	1	U	1	U	1	U	1	U	115
130.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	109
140.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	TU	1	U	1	U	1	Ü	1	U	110
150.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	TU	1	U	1	U	1	U	1	U	111
160.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	Ü	1	U	116
170.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	101
180.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	Ü	1	U	108
190.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	ul	1	U	1	U	108
224.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	107
264.9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	102
274.9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	TUT	1	U	1	U	1	U	1	U	103
284.4	12	U	12	U	12	U	12	U	12	U	12	U	12	U	24	U	12	U	12	U	12	U	38		104
304.8	2	U	2	U	2	U	2	U	2	TUI	2	U	2	U	4	U	2	U	2	U	2	U	2	U	102
314,8	1	U	1	U	1	U	1	U	1	U	1	U	1	Tul	2	TU	1	U	1	U	1	U	1	U	96
324.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	TU	105
333.2	1	TU	1	U	1	U	1	U	1	U	1	U	1	U	2	TU	1	TUI	1	U	1	U	1	U	101
356.2	1	TU	1	U	1	TU	1	U	1	U	1	U	1	U	2	Tul	1	Tut	1	U	1	U	1	TU	105
385,0	1 1	TU	1	ΙŪ	1	U	1	U	1	Tul	1	u	1	Tul	2	TUT	1	101	1	u	1	U	1	U	108
394.5	1	U	1	U	1	TU	1	U	1	U	1	U	1	U	2	U	1	Tul	1	ul	1	U	1	U	101

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled

Client: Hicksville, NY Location: Project ID: Groundwater Profiling SEI #: 03-1402

Date Sampled: 9/16-9/24/2003 Date Analyzed: 9/16-9/24/2003 9/24/2003 Report Date:

HOLE ID =P38			*								Т							
					voc	DATA	, ug/L						ı	NORGANIC DATA, mg/L		l	COELUTING	COMPOUNDS
Depth	Vinyl Chloride						. •				- 1					l	1,1-DCE / Freon	
		Q	t-Dichloroethene	Q	c-Dichloroethene	Q	Trichlorgethene	Q I	Tetrachloroethene	Q % SS	- 1	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
76.7	1	TUT"	1	UT	1	TU	1	ŪĪ	1 1	U 93		ND	0,15	0.04	114	ND	1U	10
86.7	1	u	1	U	1	U	1	U	1	88		0.03	0.09	0.07	39	0.04	1U	10
96.8	1	U	1	U	1	U	1	U	3	93		ND	0.17	0.11	41	0,04	10	10
106,7	1	U	1	U	1	U	1	U	4	99		ND	0.20	0.12	38	0.02	10	10
116,7	1	U		U	1	U	1	U	5	94	T	0.31	0.33	0.18	24	0.05	10	1U
126.7	1	U	1	U	1	U	1	U	34	90		0.03	0,19	0.08	20	ND	10	10
136.7	1	U	1	U	1	U	1	U	45	106		0.09	0.16	0.05	19	ND	1U	1U
146.7	1	U	1	U	1	U	3		54	102		0.10	0.63	0.18	22	0.03	Detect	10
152.5	4	U	4	U	10		220		310	110		0.23	0,30	1.0	47	ND	Detect	4U
166.3	1	U	1	U	1	U	1	U	100	110		0.20	0.27	3.9	213	ND	10	10
176,3	1	U	1	U	1	U	1		48	112		0.18	0,25	1.7	215	ND	1 U	10
186.3	1	U	1	U	1	U	1	U	38	108		0.28	0,32	8.8	193	ND	Detect	1U
207.5	1	U	1	u	1	U	16		9	113		0.18	0.47	5.2	145	ND	Detect	1U
216.3	1	U	1	U	1		31		26	93		0.19	0.62	2.7	135	0.04	Detect	1U
226.3	4	U	4	U	15		360		50	104		0.11	0.46	0.48	50	0.07	4U	4U
260.7	1	U	1	U	1	U	1	U	2	99		0.15	0.44	0.13	26	0,05	Detect	10
312.9	1	U	1	U	1		43		11	101		ND	0.07	0.04	41	0.02	10	10
322.9	2	U	2	U	2	U	100		54	98		0.12	0.34	0.08	37	0.05	2U	2U
332.3	3	U	3	U	14		310		32	103		0.16	0.55	0.12	54	0.03	3U	3U
341.1	5	U	5	U	28		470		7	97		ND	ND	0.06	45	0.04	5U	5U
370.1	2	U	2	U	3		160		31	104		0.04	0.10	0.06	61	0.04	2U	2U
381.3	1	U	1	U	1	U	34		7	98		ND	0.04	0.03	39	ND	1U	10
391.3	1	U	1	U	1	U	23	E	3	89		ND	ND	ND	34	ND	10	10
400.2	1	U	1	U	1	U	1	U	1	U 89		NS	NS	NS	NS	NS	10	10

											***************************************						***************************************								
												١	OC DATA, ug/L												
<u>Depth</u>	Freon 123A	Q	Freon 123	<u>Q</u> .	1,1-Dichloroethane	91	.1.1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	2	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene		3-Dichlorobenzene	9.14	-Dichlorobenzene	<u>Q 1</u>			%\$S
76,7	1	U	1	U	1	U	1	U		U	1	U	1	U	2	U	1	U	1	Ų	1	U		U	93
86.7	1	U	1	U	1	U	111	U	1 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	88
96,8	1	U	1	U	1	U	1	U		U	1	J	1	U	2	U	1	u	1	U	11	U	1	U	93
106.7	1	U	1	U	1	U	1]	U	1	U	1	J	1	U	2	U	1	U	1	U	1	U	1	U	99
116.7	1	U	1	U	1	U	1	U	1	U	1	ÜΓ	1	U	2	U	1	U	1	U	1	U	1	U	94
126.7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U		U	90
136,7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	106
146.7	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U		U	1	U	1	U	102
152,5	4	U	4	U	4	U	4	U		U	4	U		U	8	U	4	U	4	U	4	U	7		110
166.3	1	U	1	U	1	U	1	U	1	U		U	1	U	2	U	1	U	1	U	1	U	1	U	110
176.3	1	U	1	U	1	U	1	U	1	UI	1	U	1	U	2	U	1	U	1	U	1	U	1	U	112
186.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
207.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1		113
216,3	1	U	1	U	2	П	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	2		93
226.3	4	U	4	U	4	U	4	U	4	U	4	U	4	U	8	U	4	U	4	U	4	U	4	U	104
260.7	1	U	1	U	1	U	1	U	1	J	1	U	1	U	2	U	1	U	1	U	1	U	1	U	99
312.9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	101
322.9	2	U	2	U	2	U	2	U	2	U	2	U	2	U	4	U	2	u	2	U	2	U	2	U	98
332.3	3	U	3	U	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	U	3	U		U	103
341,1	5	U	5	U	5	U	5	U		u	5	U	5	U	10	U	5	U	5	U	5	U	5	U	97
370,1	2	U	2	U	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U	104
381,3	1	U	1	U	1	U	1	ul	1	U	1	υĺ	1	U	2	U	1	Tu	1	U	1	U	1	U	98
391.3	1	U	1	lul	1	TUI	1	U	1	U	1	U	1	U	2	TU	1	Tul		U	1	U		U	89
400,2	1 1	u	1	Tut	1	U	1	ul	1	U	1	υl	1	U	2	U	1	U	1	Ü	1	U	1	U	89

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled

Location: Hicksville, NY Project ID: Groundwater Profiling SEI #: 03-1402 Date Sampled: 7/23 - 7/30/03 7/23 - 7/30/03 Date Analyzed:

7/30/03

Report Date:

HOLE ID = P42					Voci	DATA	. ua/L						NORGANIC DATA, mg/L			COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride	Q	t-Dichloroethene	Q	c-Dichloroethene	Q	Trichlorgethene		Tetrachloroethene C	2 % SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freon 113	1,2-DCA / Benzene
79,6	1	U	1	U	1	U	1	ŧ	1 1	91	 0.03	0.07	0.02	15	0.02	1 U	1 U
89,6	1	U		U	1	U	1	L	1 1	91	ND	0,06	0,03	26	0,03	1 U	1 U
99.6	1	U	1	Ú	1	U	1	L	1 1	99	 0.03	0,08	0.06	65	0.02	1 U	1 U
109.6	1	IUI	1	U	1	U	1	T	1 1	102	 ND	0.07	0.07	79	0.02	10	1 U
119.6	20	Ü	20	U	180	\Box	80	_	1600	110	 0.16	0.27	2,90	37	0.02	20 U	20 U
129,6	20	U	20	U	95		34		1900	112	 0.15	0,24	1.40	39	0.02	20 U	20 U
139,6	20	U	20	u	130		45		4600	113	 9,80	10.05	0.55	40	ND	20 U	20 U
149.6	20	U	20	U	75	П	29		2200	112	 0.26	0,54	0.14	49	0.02	20 U	20 U
159.6	20	U	20	U	36	П	20	1	1300	119	 26.70	31.90	0,67	76	0.03	20 U	20 U
169.4	1	U	1	u	2		20		8	107	0,11	0,14	2.45	172	ND	1 U	1 U
179.6	20	U	20	U	87	П	160		760	118	 0,06	0,12	0.07	88	ND	20 U	20 U
189.6	20	U	20	U	20	U	20	1	750	113	 0.03	0.07	0.05	51	ND	20 U	20 U
197.7	1	U	1	U	1	U	5	I	48	112	 ND	0.03	0.26	62	0.02	1 U	10
202.8	1	U	1	U	1	U	1	ŧ	87	111	 ND	0.05	0.20	76	ND	1 U	1 U
217.2	20	Ü	20	U	20	U	31		2400	112	 ND	0.04	0.05	49	ND	20 ∪	20 U
224.6	20	U		U	20	U	44		2300	115	 0.08	0,12	0.05	51	ND	20 U	20 U
234,6	20	U	20	U	22		310	_	1200	109	 0.10	0.33	0.35	73	ND ND	20 U	20 U
276.4	3	U	3	U	3	U	7		290	114	 ND ND	0,05	ND	78	ND	3 U	3 U
287,9	1	U	1	U	1	U	1	1	80	117	 ND	0,10	0.03	78	ND	1 U	1 U
298.0	1	U		U	1	U	17		110	116	 ND	0.06	ND	164	ND	1 U	1 U
308.6	2	U	2	U	2	U	35		150	116	 0.05	0,12	0.02	348	ND	2 U	2 U
319,8	1	U	1	Ü	1	U	25		130	117	 0.16	0.20	2.05	486	ND	1 U	1 U
329.8	3	Ü		U	3	U	20		150	121	0.14	0,19	1.85	496	ND	3 U	3 U
336.8	3	Ü	3	U	3	U	17		190	117	 0,16	0,24	0.10	395	ND	3 U	3 U
354.6	3	U	3	U	3	Ü	13		240	117	0.20	0.22	0.05	241	ND	3 U	3 U
389,5	1	U	1	U	1	U	2		73	82	 0,20	0.84	0,07	394	0,04	1 U	1 U
410.1	1	U	1	U	1	U	2	- 1	26	83	 0.03	0,20	0.10	678	ND	1 U	1 U
424,5	1	U	1	U	1	U	1	1	2	82	0.03	0,17	0.10	252	0.03	1 U	1 U
434.5	1 1	U	1	U		U	1	l	1 1	U 80	 0.06	0.41	0.35	615	ND	10	10

	į.												VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon 123	Q	1.1-Dichloroethane	Q 1	1,1,1-Trichtoroethan	Q.	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q	1,3-Dichlorobenzene	Q ·	1.4-Dichlorobenzene	Q 1,2-	Dichlorobenze	ne Q	%ss
79.6	1 1	TUI	1	TUT	1	U	1	TUT		ΤŪΙ		U	1 1	U	2	TUI	1	Tul		JUI	1 1	Ul	1	[U]	91
89.6	1	u	1	U	1	U	1	TU	1	U	1	U	1	U	2	U	1	U	1	U	1	Ū	1	U	91
99.6	1	U	1	U	1	U	1	U	1	Ū	1	U	1	Ü	2	U	1	U	1	U	1	υİ	1	U	99
109.6	1	U	1	U	1	U	1	U	1	Ü	1	U	1	U	2	U	1	U	1	U	1	U	1	u	102
119,6	20	Ü	20	U	20	U	20	U	20	U	20	U	20	U	40	Tu	20	U	20	U	20	U	20	U	110
129.6	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	Ü	20	U	112
139,6	20	U	20	U	20	U	20	U	20	Ų	20	U	20	U	40	U	20	U	20	U	20	U	20	U	113
149.6	20	U	20	U	20	U	20	U		U	20	U		U	40	U	20	U	20	U	20	Ű	20	U	112
159.6	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	20	U	119
169.4	1	U	1	U	1	U	1	U		U		U		U	2	U	1	U	1	U	1	U	1	U	107
179.6	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	Jul	20	Ü	20	U	118
189,6	20	U	20	10	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	21		113
197,7	1	U	1	U	1	U	1	U	1	U	1	Įυ	1	U	2	JU	1	U	1	JU	1	Ü	1	U	112
202.8	1	U	1	U	1	U	1	U	1	Ú	1	U	1	U	2	U	1	U	1	U	1	U	1	U	111
217.2	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	20	U	112
224,6	20	U	20	U	20	U	20	U	20	Ü	20	U	20	U	40	U	20	U	20	JUJ	20	U	20	U	115
234,6	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	20	U	109
276.4	3	U	3	U	3	U	3	U	3	U	3	U		U	6	U	3	U	3	U	3	U	3	U	114
287.9	1	U	1	U	1	U	1	U	1	Ü	1	U	1	U	2	U	1	U	1	U	1	U	1	U	117
298.0	1	U	1	U	1	U	1	U	1	U		U	1	U	2	U	1	U	1	U	1	Ü	1	U	116
308.6	2	U	2	U	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U	116
319.8	1	U	1	U	1	U	1	U	1	TU	1	U	1	U	2	U	1	U	1	U	1	U	9		117
329,8	3	U	3	U	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	U	3	U	3	U	121
336,8	3	U	3	U	3	U	3	U	3	Tu	3	U	3	U	6	U	3	U	3	U		U	3	U	117
354.6	3	U	3	U	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	V		U	3	U	117
389,5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	82
410,1	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	83
424.5	1	U	1	U	1	U	1	U	1	U	1	TU	1	U	2	U	1	Ü	1	U	1 1	u	1	U	82
434,5	1	U	1	U	1	U	1	U	1	Ü	1	U	1	U	2	U	1	U	1	U	1	U	1	U	80

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %,SS = Surrogate Recovery

I = Undetected below the specified reporting limit.

J = Estimated value

ND = Value below detection limit.
NS = Not Sampled

Hicksville, NY Location: Project ID: Groundwater Profiting

SEL#: 03-1402 9/9-9/24/2003 Date Sampled: Date Analyzed: 9/9-9/24/2003 9/24/2003 Report Date:

HOLE ID =P43																	
					VOC DAT	A, ug/L											COMPOUNDS
Depth	Vinyl Chloride															1.1-DCE / Freon	
		Q t	-Dichloroethene C	3 .	c-Dichlorgethene C	Trichloroethene	<u>Q</u>	Tetrachloroethene	Q %	<u>\$8</u>		Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79.9	1	U	1 (ıΓ	1 U	9		2		90	ND	0.03	ND	20	0.02	10	10
89,9	1	U	1 (J_	1 0	5	I	2	1	00	ND	0.08	1.1	25	ND	10	10
99.9	1	U	1 (J_	1 4	2		2		99	0.46	1.30	2.5	31	0.23	1U	10
109,9	1	U	1 (J	1 U	11	T	7	1	05	0.03	0.07	2.0	45	ND	10	10
119.9	1	U	1 (7	10	38	7	20	1	04	0.08	0,19	2.4	45	ND	Detect	10
129,9	140		20 U	1	710	1100	1	590	1	08	0.13	0.63	1.6	26	0.09	Detect	20U
139.9	97		20 U	J	720	710		600	1	10	0.06	0.46	1.4	28	0.03	20U	20U
150,1	180		20	T	1300	730		1800	1	10	0.12	0.46	5.3	48	0.08	20U	20U
161.7	210		20 (J	1400	320		1400	1	11	0.04	0.16	3.3	48	ND	20∪	20U
169.9	150		20 U	Л	1100	810		1000	1	12	0,21	1,39	3.0	55	0.13	20U	20U
179.9	23		4 (J	78	35	I	370	1	11	16.6	18,3	1.4	88	0.17	4U	4U
189,9	1		1 1	J	5	5	_	24	1	96	0.25	2.36	2.1	173	ND ND	1U	10
199.9	44		20 U	J	320	200	T	1500	1	15	0.03	0,10	4,3	124	ND DI	20Ú	200
233,9	48		10 l	J	170	170	I	720	1	12	0.03	0.29	9,2	132	0.02	10U	10U
246,7	5		1 (J	54	85	T	150	1	12	0.16	0.24	0.24	84	0.02	1U	10
254.9	6	U	6 (J	74	38	7	500	1	01	0.25	0.79	2.6	200	0.06	6U	6U
264,9	3	U	3 (J	58	29		290	1	104	0.05	0.08	7.8	235	ND	3U	3U
274.9	2	U	2 (J	18	18		160	1	01	0.22	1,49	9,0	278	ND	2U	2U
284,9	3	U	3 (1	12	24	I	220	1	103	0.05	0.13	7.8	254	0.02	3U	3U
294.9	1	U	1 (J	7	19	T	110	1	01	ND	0.04	8.0	256	ND	Detect	10
304,9	2	U	2 (J	3	57	\top	143	1	04	0.26	0.44	7.8	262	0.11	2Ú	2U
324,5	2	U	2 1	J	2 4	21	1	130	1	101	NS	NS	NS	NS	NS	2U	2U
334.2	1	U	1 1	J	1 (1	L	J 1	U 1	104	NS	NS	NS	NS	NS	1U	1U

												VOC DATA, ug/L												
Depth	Freon 123A	0	Freon 123	0	1_1-Dichloroethane	0.1.1	1-Trichlorgethan	e O	Toluene	0	Chlorobenzene	Ethylbenzene	0	m.p-Xylene	0	o-Xvlene	0.1	3.Dichlorohenzene	0.14	-Dichlorohenzene	. 0	1.2-Dichlorobenzen	. 0	%SS
79,9	1	Till	1	Till	1	111	1	TUT	1000000	ΤÖ		1	m	2	٦Ã	1	THE	1	101	1	imi	1	Tin -	90
89,9	1	lăl-		tiit	1	11		lul-		tŭ			1		til		H	1	111		111		10	100
99.9	1	tŭt	<u> </u>	tiit.		ň-		151-		10	1		liil-		l ĭil		111		111-		tăt		111-	99
109.9		171		Hill-		-		tül		10			1		tüt		Hill		131		tül		111-	105
119.9	 	till		H	1	111	1	111	1	111		<u>'</u>	H		tül		111		t ől –		18		+61-	104
129.9	20	+#+	20	111	20	m-	20	Tül-	20	111	20	20	1	40	1nt	20	151	20	Hil-	20	1	20	+#+	108
139.9	20	tüt	20	Til-	20	 -	20	101	20	Hü	20		H	40	lül	20	Hit-	20	뺍	20	111	20	tül	110
150.1	20	111	20	111	20	ŭ -	20	111	20	tii	20	20	111	40	lul	20	tiil-	20	tül	20	til	20	tüt	110
161.7	20	111	20	tiil	20	ň-	20	111	20	tii	20	20	löl-	40	tüt	20	뺍	20	101-	20	10	270	+	111
169,9	20	l ŭl-	20	tit	20	111	20	+#+	20	111	20	20	1	40	뺍	20	1	20	tül	20	10	20	111	112
179.9	4	101	4	tüt	4	111		111		Ť	4	1	Hit	9	tňt	A	111		tăl-		10		tut	111
189,9	1	tüt-	1	ដ	1	111	1	101	1	111	1		Ħ		뺍	1	Hit	1	tül		111		+	96
199.9	20	til-	20	liit-	20	11	20	tă -	20	111	20	20	tit	40	tăt	20	뺍	20	111	20	10	20	+11+	115
233.9	10	tüt	10	뺍	10	11	10	101	10	10	10	10	lil.	20	tiil	10	tăt	10	111	10	tiil	12	+++-	112
246 7	1	111	1	tiit	1	ŭ-	1	111	1	tii	t	1	iil	2	tül		tit	1	l iil-	1	tă		+	112
254.9	6	tül	6	tüt	6	0		101	6	111	6		뺍	12	til		tiit		tăt-	6	til		111	101
264.9	3	tűl	3	tül	3	انا	3	til	3	tü	3	- 3	til		뺍	3	Till-	3	tă	<u>3</u>	tül		+	104
274.9	2	tül	2	tüt		t ul-	2	til		15	2	<u>2</u>	til		tăt	2	tüt	2	tăl-		tă	3	++-	101
284.9	3	tút		tiil-	3	t it -		til		+5			Hit		뺍		H		tiil -		۱ŭ	<u>8</u>	+-	103
294.9	1 1	冊	<u>i</u>	詂		ii-	<u> </u>	151	1	111	1 1	1	Hill	2	til		탮		tŏl-	<u>i</u>	15		+	101
304.9	2	tűl		tiil		iii-		tül	· · ·	۲ŭ	7	2	tŏl		til	2	tiit		töl		10	13	++-	104
324.5	1 2	111		tiit		iil -		+5+-		۲ň	2	2	tit		뺎	2	til		17		10	<u>13</u>	+	101
334.2	1	Tul	1	Ü	1	Ū	1	tül		Ü	1	1	Ü	2	Ü	1	tŏt	1	11	1	Ü	1	U	104

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEI #: 03-1402 Date Sampled: 9/2 -9/10/2003 9/2 -9/10/2003 Date Analyzed: 9/10/2003 Report Date:

HOLE ID =P44	I									***************************************						
HOLL ID 144]				1100 0 1									1	0051117110	COMPOUNDS
C	10-1011-01				VOC DA	A, ug/L						INORGANIC DATA, mg/L	-	1	1.1-DCE / Freon	COMPOUNDS
Depth	Vinyl Chloride		District and the second	0	- Division - 6	Totaldasa		O T-1	0/ 00	Fe+2	Fe Total	Ammonia	Chloride	Chlorine Total	113	1.2-DCA / Benzene
70.0		<u> </u>	-Dichloroethene	<u>u</u>	C-Dichloroethene C	Inchioro	thene	Q Tetrachloroethene Q								1U
79.8	1	10	1	U		5		3	92	0.08	0.18	0.17 0.57	36	0.02	10	10
89.8	1	101		4	66	20		67	109	0.36	0.72		58	0.16	10	5U
99.3	5	U	5	<u>니</u>	9	511		81	95	0.15	0.30	0,50	43	0.00	5U	20U
109.8	20	10	20	U	2100	70		130	107	0.04	0.13	0.08	58	ND	20U	
121.6	20	141		U.	2100	58		180	102	ND	0.08	0.45	49	ND	20U	20U
131,1	20	U	20	U	1100	68		360	106	0.34	1.88	2.30	42	0.15	200	20U
139.8	24	1	10	니	400	30		220	111	0.05	0.51	2.10	33	0.04	10U	10U
149,8	31	1-1-	12	U	510	50		330	103	0.20	0.98	2.70	42	0,06	12U	12U
159.8	20	U	20	U	990	62		600	102	0.13	0.37	2.40	46	ND	20U	20U
169.8	20	101	20	니	1000	47		570	104	0,21	1.09	0.71	40	0.07	20U	20U
179.8	20	U	20	U	440	48		1800	106	0.18	0.95	3.70	34	0.05	20U	20U
189.8	10	U	10	U	660	28		470	109	ND	0,10	2,90	74	ND ND	100	10U
199.8	19	11	10	U	260	36		740	110	0,10	0,52	3,50	77	0.32	100	10U
215.8	6	U	6	U	240	13	1	63	94	0.04	0.11	0.28	54	ND	Detect	6U
229.2	10	U	10	U	820	38)	140	95	0.06	0,18	5,20	61	ND	Detect	10U
239.9	8	U	8	U	460	21)	110	97	0.05	0.11	2,90	86	ND	Detect	8U
249.9	2		1	U	57	34		30	100	0.03	0.12	3,50	135	ND	Detect	1U
257.1	1	U	1	U	4	15		17	98	0.04	0.07	2.10	204	ND	Detect	10
284.9	1	U	1	U	28	31		53	105	0.30	0.64	6.80	208	0.02	10	1U
299.9	8	U	8	U	210	26)	320	105	0.04	0.16	3.70	79	ND	8U	8U
307.9	6	U	6	U	120	22)	200	101	0.17	1.23	4,10	79	0,06	6U	6U
339.8	6	U	6	U	6	28)	220	100	0.17	0.33	0.24	251	0.04	Detect	6U
349.8	4	U	4	U	4	13)	170	100	0.06	0.27	0.12	270	ND	4U	4U
356.1	6	U	6	U	6 L	31)	260	105	0.13	0.18	0.10	182	ND	6U	6U

	1																								
													VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon 123	Q	1.1-Dichloroethane	Q 1	1.1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	21	1.3-Dichlorobenzene	Q 1	4-Dichlorobenzene	9:	1,2-Dichlorobenzene	Q	%SS_
79.8	1	U	1	U	1	U	1	U	1	U		U	1	U	2	U	1	Ü	1	U	1	U	1	U	92
89.8	1	U	1	U	1	U	1	U	1	IUI	1	U	1	U	2	U	1	U	1	U	1	U	1	U	109
99.3	5	U		U	5	U	5	U	5	U	5	Ū	5	U	10	U	5	U	5	U	5	U		U	95
109.8	20	U	20	U	20	U	46		20	U		U	20	U	40	U	20	U	20	U	20	U	490		107
121.6	20	U	20	U	20	U	84		20	U	20	U	20	U	40	U	20	U	20	u		U	600		102
131.1	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	Ü	20	U	20	U	20	U	650		106
139.8	10	U	10	U	10	U	10	U	10	U	10	U	10	U	20	U	10	U	10	U	10	U	460		111
149.8	12	U	12	U	12	U	12	U	12	U	12	U	12	U	24	U	12	U	12	U	12	U	350		103
159.8	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	180	Ш	102
169.8	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	u	210		104
179.8	20	U	20	U	20	U	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	90		106
189.8	10	U	10	U	10	U	10	U	10	U	10	U	10	U	20	U	10	U	10	U	10	U	140		109
199.8	10	U	10	U	10	U	10	U	10	U	10	U	10	U	20	U	10	U	10	U	10	U	63		110
215.8	6	U	6	U	6	U	12		6	U	6	U	6	U	12	U	6	U	6	U	6	U	180		94
229.2	10	u	10	U	10	U	150		10	U	10	U	10	U	20	U	10	U	10	U	10	U	55		95
239.9	8	U	8	U	8	U	52		8	U	8	U	8	U	16	U	8	U	8	U	8	U	51	$\sqcup \sqcup$	97
249.9	1	U	1	U	1	U	7		1	U	1	U	1	U	2	U	1	U	11	U	1	U	8		100
257.1	1	U	11	U	1	[U]	4	LI	1	U	1	U	1	U	2	U	1	U	1	U	1	[U]	2	Ц.,	98
284.9	1	U	1	U	1	U	1	U	1	U	1	Ū	1	U	2	U	1	U	11	U	1	U	7	1	105
299.9	- 8	U	8	U	8	U	8	U	8	U		U	8	U	16	1Ū	8	U	8	U	8	IU	31		105
307.9	6	U	6	U	6	U	6	U	6	U	6	Ū	6	U	12	U	6	[U]	6	U	6	U	19		101
339.8	6	U	6	U	6	U	6	U	6	U	6	U	6	U	12	U	6	U	6	U	6	U	6	U	100
349.8	4	U	4	U	4	U	4	U	4	U	4	U	4	U	8	U	4	U	4	U	4	[U]	4	U	100
356.1	6	U	6	U	6	U	6	U	6	U	6	U	6	U	12	U	6	U	6	U	6	U	6	U	105

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery
U = Undetected below the specified reporting limit.
J = Estimated value just below calibration range
E=Estimated value exceeding the calibration range
ND = Value below detection limit.
NS = Not Sampled

Hicksville, NY Location: Project ID: Groundwater Profiling SEI #: 03-1402

8/4 - 8/13/03 Date Sampled: Date Analyzed: 8/4 - 8/13/03 Report Date: 8/14/2003

HOLE ID = P45	Τ																
					VOC I	ĀTĀ	. ug/L					1	NORGANIC DATA, mg/L	_		COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride												,		ĺ	1.1-DCE / Freon	
		Q 1-D	chloroethene	Q c-	Dichloroethene	Q	Trichtoroethene	QI	etrachloroethene	Q % SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine. Total	113	1.2-DCA / Benzene
71.3	1	U	1	U	1	U	1	U	1	U 84	ND	0.04	0,02	212	0,02	10	1U
81.3	1	U	1 1	U	1	U	1	U	1	U 88	ND	0.04	ND	12	0.02	1U	10
91.3	1	U	1	U	1	U	11	U	1	82	ND ND	0.08	0.05	28	0.02	1U	10
101.3	1	U	1	U	10	П	29		38	95	0.09	0.27	0.09	28	ND	10	1U
111.3	1	U	1	U	21		56		59	98	0.49	0.15	0.08	27	ND	1U	10
121.3	4	U	4	U _	37	П	171		141	99	0,13	0,27	0.09	34	ND	4U	4U
131.3	2	U	2	U	11	П	69		7	104	0.40	0.74	0.65	27	0.11	20	2∪
151.3	1	U	1	U	1	U	3		3	91	ND	0.24	1,80	96	ND	10	Detect
167,3	1	U	1	U	1	U	1	U	1	U 91	0.10	0.23	0,15	117	0.02	10	1U
177.3	1	U	1	U	1	U	2		15	85	ND	0,14	0.08	214	0.05	10	10
187.3	1	U	1	U	1	U	2	TT	14	97	ND	0.09	0.09	328	0.03	10	10
197.3	1	U	1	U	1	U	2	Т	8	97	0.05	0.22	0.42	326	ND	10	10
207.3	1	U	1	U	1	U	2	TT	19	96	0.09	0.39	0.19	349	0.06	1U	10
217.3	1	U	1	U	1	U	2	TT	10	90	0.15	0.27	0.58	343	ND	10	1U
227.3	1	U	1	U	1	U	1		14	93	ND	ND	0.06	413	0.03	10	10
237.3	1	U	1	U	1	U	3	TT	5	92	ND	0.06	0.06	503	0.02	10	10
270.8	2	U	2	U	2	U	68	TT	61	97	ND	0.14	0.06	273	ND	2U	2U
281.7	4	U	4	U	4	U	276	T	20	98	0.32	0.49	0,10	76	0.03	Detect	4U
291.7	4	U	4	U	4	U	63	T	270	100	ND	0,06	0.05	553	0.03	4U	4U
301.7	1	U	1	U	1	U	15		33	105	ND	ND	0.06	663	0.02	1U	10
311,7	1	U	1	U	1	U	24	TT	42	100	0.04	0.11	0,05	658	ND	1U	10
321.7	1	U	1	U	1	U	29	TT	52	95	ND	0.05	0,03	820	0.03	10	10
340.1	1	U	1	U	1	U	3	TT	22	97	0.06	0.32	0.06	295	0.04	10	10
351.8	1	U	1	U	1	U	1	U	3	104	ND	0.04	0.03	286	0.02	10	10
366.4	1	U	1	U	1	U	2		21	116	0.11	0.18	0.11	173	0.04	1U	10

													VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon 123	Q.	1.1-Dichloroethane	Q 1	1.1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q 1	3-Dichlorobenzene	2 Q 1	1.4-Dichlorobenzene	Q 1.2	-Dichlorobenzen	2 Q	%SS
71.3	1	U	1	U	1	U	1	Ü	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	84
81.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	88
91.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	82
101.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	3	U	95
111.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
121.3	4	U	4	U	4	u	4	U	4	U	4	U	4	U	8	U	4	U	4	U	4	U	4	U	99
131,3	2	U	2	U	3		2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U	104
151,3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	11	U	11	U	1	U	1	U	91
167.3	1	U	1	U	1	U	1	U	1	Ü		U	1	U	2	U	1	U		U	1	U	1	U	91
177.3	1	U	11	U	1	U	11	U	1	U	1	U	1	U	2	U	11	U	11	U	1	U	1	U	85
187.3	1	U	1	U	1	u	1	U	1	U	1	U	1	U	2	U	11	U	11	U	1	U	1	U	97
197.3	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1]U]	1	U	1	U	97
207.3	1	U	11	U	1	U	1	U	1	U		U	1	U	2	ΙUΙ	1	U	11	U	11	U	1	U	96
217.3	1	U	1	U	1	U	11	U	1	Ų	1	U	1	U	2	U	11	U	. 1	U	1	U	1	U	90
227.3	11	U	1	U	1	U	11	U	1	U		U	1	U	2	U	11	U	11	U	1	U	11	U	93
237.3	11	U	1	U	11	U	1	U	1	U		U	11	U	2	U	11	U	1	U	11	U	1	U	92
270.8	2	U	2	U	2	U	2	U	2	U		U	2	U	4	U	2	U	2	U	2	U	2	U	97
281.7	4	U	4	U	4	U	4	U	4	U		U	4	U	8	U	4	U	4	U	4	U	4	U	98
291.7	4	U	4	IUI	4	U	4	U	4	U	4	U	4	U	- 8	U	4	U	4	U	4	U	4	U]	100
301,7	1	U	11	U	1	U	11	U	1	U	1	U	11	U	2	U	1	1U	1	U	11	U	11	U	105
311.7	11	U	1	U	1	U	11	U	1	U	1	U	1	U	2	U	1	U	11	U	1	U	11	U	100
321.7	1	U	1	U	1	U	11	U	1	U'		U	1	U	2	U	1	U	1	U	11	U	1	U	95
340.1	1	U	1	U	1	U	1	U	1	U		U	1	U	2	U	1	U	1	U	1	U	1	U	97
351.8	1 1	U	1	U	1	U	11	U	1	U		U		U	2	U	1	Ü	11	U	1	U	1	U	104
366,4	1 1	U	1	ΙŪ	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	ΙŪ	. 1	U	1	U	116

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

L Undetected below the specified reporting limit.

J = Estimated value.

NS = Not Sampled

Client: GTEOSI

Hicksville, NY Groundwater Profiling

Location:
Project ID:
SEI #:
Date Sampled:
Date Analyzed: 03-1402 8/19 -9/8/03

8/19 -9/8/03 Report Date: 9/8/2003

HOLE ID =P46																
				VOC DAT	ΓA, ug/L						ı	NORGANIC DATA, mg/L			COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride															1
		Q t-Dichloroethene			Trichloroethe		2 Tetrachloroethene		% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freon 113	1.2-DCA / Benzene
79.6	1	U 1	U					U	119	ND	0,20	0.11	27	0.05	10	10
89.6	1	U 1	u			- 1	J 1	U	108	ND	ND ND	0.03	10	0.02	10	10
99,6	1	U 1	Ü	1 U		1	J 1	U	109	0.37	1.24	0.54	11	0.24	1U	10
109,6	1		U	1 0			J 1	u	101	0.05	0.14	0.13	5	ND ND	10	10
119,6	6	U 6	U	6 U	6		J 550		104	ND	0,05	0,03	32	0.02	6U	6U
129.6	1	U 1 U 1	U	1 1			J 9	11	99	0,06	0.27	0,15	15	0.07	10	10
139.6	11	U 1	U	1 U	111	- 1	J 1	U	108	ND	0.12	0,08	12	0.02	10	10
149.6	1	0 1	U	1 (11		J 1	U	116	0.17	0.69	0.34	69	0.10	10	10
159.6	1		U	1 1		- 1		U	108	0,19	0.67	0.19	137	0.11	10	10
169,6	11	U 1	U	1 (1	Û	106	0.24	0.35	0.09	108	ND	10	10
179.6	1	U 1	U	1 (·	J 1	U	106	0.37	0.75	0,31	125	0.16	10	10
189.6	1	U 1	U	1 L			J 1	U	115	ND	0.04	0.04	72	0.02	10	10
199.6	1	U 1 U 1	U	1 L	1		J 1	U	86	0.08	0.16	0,10	59	0.06	10	10
209,6	1	U 1	U	1 [U	1 1		J 1	U	109	0.05	0.13	0,05	41	0.02	10	10
215.2	1	U 1	U	1 L			J i	U	100	ND	0.04	0.02	48	ND	10	10
275,4	1	U 1 U 1	u	1 1			49		104	0.07	0.20	0.13	712	0,06	1Ü	10
284.3	1	U 1	U	1 1			50		101	ND	0.03	0.07	683	ND	10	10
291,7	2	U 2	U	2 L	3		150	TT	100	0.31	0.56	0,46	471	0.13	2U	2U
298,4	2	\U\ 2	U	2) (1	220	T	100	ND	0,07	0,07	99	ND	20	2U
307.7	3	U 3	U	3 (13		260	11	101	0.20	0.21	0.34	527	0.03	3U	3U
318.4	2	U 2	U	2 (4		240		106	ND	0.10	0.06	361	ND	20	20
330.2	1	U 1	U	1 (5		120		107	ND	0.04	0.07	271	0.02	10	10
340.2	1	U 1	Ü	1 (1	1	U 50		104	ND	ND	0.03	261	0.02	1U	10
348.3	1	U 1	U	1 (1		U 4		104	0.13	0.19	0,26	362	0,06	10	10
360.2	1	U 1	U	1 (1 1	1	U 7		105	ND	0.03	0.10	685	0.03	10	10
389,3	1	U 1	U	1 1	3		22		102	ND	ND	0.04	703	0.02	10	10
399.3	1	U 1	U	1 (2		14		97	0.08	0,20	0.23	620	0.05	10	10
409.3	1	U 1	U	1 (1		11		109	ND	ND	0.02	595	0.02	1U	10
419.3	1	U 1	U	1 1	2		13		99	0.17	0.45	0,35	758	0.12	10	10
430.0	1	U 1	U	1 1	4		17	\top	101	0.36	2,5	0,52	1148	0.33	10	10
438,5	2	1	U	1 1	5		20	11	94	0.07	0,49	0,19	908	0,07	1U	10
470,3	1	U 1	U	1 1	7		15	11	101	ND	0,13	0.02	778	0.03	1U	10
480.3	1	U 1	u	1 (1 1		U 7	11	97	0.03	0.18	0.15	343	0.07	10	10
490.3	1	U 1	U	1 (1		U 4	71	88	0.15	0,56	0.27	190	0.13	10	10
498.1		U 1	u	1 1	1		U 8	11	95	NS NS	NS	NS	NS	NS	10	10

	1				VOC DATA, ug/L						
Depth	Freen 123A Q Freen 123	Q 1,1-Dichloroethane Q 1,1,1-Trichloroethane Q	Toluene Q	Chlorobenzene Q	Ethylbenzene Q	m.p-Xylene			Q 1.4-Dichlorobenzene		
79.6	1 0 1	U 1 U 1 U	1 U	1 0	1 U	2		U 1		U 1	U 119 U 108 U 109
89.6	1 U 1	U 1 U 1 U	1 U	1 U	1 0	2	U 1	U 1	U 1 U 1	U 1	U 108
99,6	1 U 1	U 1 U 1 U	1 U	1 U	1 U					U 1	U 109
109,6	1 U 1	0 1 0 1 0	1 U	1 U	1 U					U 1	U 101 U 104
119,6	6 U 6	U 6 U 6 U	6 U	6 U	6 JU				U 6	U 6	U 104
129.6	1 U 1	U 1 U 1 U	1 U	1 U	1 U			U 1		U 1	U 99
139,6	1 0 1	U 1 U 1 U	1 U	1 0	1 0	2	U 1		U 1		U 108
149.6	1 0 1	U 1 U 1 U	1 U	1 U	1 U				U 1	U 1	U 116
159,6	1 U 1	U 1 U 1 U	1 U	1 U	1 0				U 1		U 108
169,6	1 0 1	U 1 U 1 U	1 U	1 U	1 U				U 1	U 1	U 106
179,6	1 0 1	0 1 0 1 0	1 U	1 U	1 0				U 1	U 1	U 106 U 115
189,6	1 0 1	0 1 0 1 0	1 U	1 0	1 U				U 1	U 1	U 115
199.6	1 U 1	U 1 U 1 U	1 U	1 U	1 0				0 1	U 1	U 86
209.6	1 U 1	U 1 U 1 U	1 0	1 U	1 U		U 1		U 1	U 1	U 109
215,2	1 U 1	U 1 U 1 U	1 U	1 U	1 0		U 1		U 1		U 100
275,4	1 0 1	0 1 0 1 0	1 U	1 U	1 Ú				U 1	U 1	U 104
284.3	1 0 1	0 1 0 1 0	1 U	1 U	1 U		0		U 1	01	U 101
291.7	2 U 2	U 2 U 2 U	2 U	2 0	2 U		U 2		U 2	U 2	U 100
298,4	2 U 2	U 2 U 2 U	2 U	2 U	2 U		U 2		U 2		U 100
307,7	3 U 3	U 3 U 3 U	3 U	3 U	3 U	6			U 3		U 101
318,4	2 U 2	U 2 U 2 U	2 U	2 U	2 U			U 2	U 2		U 106
330.2	1 0 1	U 1 U 1 U	1 U	1 U	1 U	2	U 1	U 1	U 1	U 1	U 107
340.2	1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1 U	1 U	1 U	_2	U 1	U 1	U 1		U 104
348.3	1 U 1	U 1 U 1 U	1 0	1 U	1 U		U 1	U 1	U 1	U 1	U 104
360.2	1 (0 1	0 1 0 1	1 U	1 U	1 U	2	U 1	U1 1 1	V1 1 1	U 1	U 105 U 102
389,3	1 0 1	0 1 0 1 0	1 U	1 Ü	1 U	2	U 1	U 1	U 1		
399.3	1 0 1	U 1 U 1 U	1 U	1 U	1 U		U 1 U 1	U 1	U 1	U 1	U 97
409,3	1 U 1	U 1 U 1 U	1 0	1 U	1 U	2	U 1	U 1	U 1		U 109
419,3	1 U 1	U 1 U 1 U	1 U	1 U	1 U	2	U 1	U 1	U 1		U 99
430.0	1 U 1	0 1 0 1 0	1 U	1 U	1 U	2	U 1	U 1	0 1	U 1	U 101
438.5	1 U 1	0 1 0 1 0	1 U	1 U	1 U	2	U 1	U 1	U 1	U 1	U 94
470.3	1 U 1	U 1 U 1 U	1 U	1 10	1 U	2	U 1	U 1	U 1	U 1	U 101
480,3	1 U 1	U 1 U 1 U	1 U	1 0	1 U	2	U 1	U 1	U 1	ul 1	U 97
490,3	1 U 1	U 1 U 1 U	1 0	1 U	1 IU		U 1	U 1	U 1	Ul 1	U 88
498.1	1 U 1	0 1 0 1 0	1 1	1 0	1 U		ŭ i		ŭ i		U 96

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

Le Unidexcelle below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled

Location: Hicksville, NY Project ID: SEI #: Groundwater Profiling Date Sampled: 03-1402 Date Analyzed: 9/2 - 9/11/2003 Report Date: 9/2 - 9/11/2003 9/11/2003

HOLE ID =P47	Vinyl Chloride				VOC I	DATA	, ug/L						ı	INORGANIC DATA, mg/L	-		COELUTING C	
		Q	t-Dichloroethene	Q	c-Dichloroethene	Q	Trichloroethene	Q	Tetrachloroethene	Q	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
77.1	1	U	1 1	U	1	U	1	U	1	U	92	ND	0.12	0,10	190	0,03	1U	10
87.1	1	U	1 1	U	1	U	1	U	2	Т	101	ND	0.10	0.05	117	0,02	1U	1U
97.1	1	U	1	U	1	U	1	U	2	T	92	ND	0.07	0,10	104	ND	10	10
107.1	1	U	1	U	1	U	1	U	4	T	98	0.34	0,81	0,51	81	0.20	1U	1U
117,1	1	U	1	U	1	U	1		410	Т	111	ND	0,03	0.04	204	ND	1U	1U
127.1	1	U	1	U	1	U	1	U	66	T	104	0,06	0,15	0.11	259	0,04	10	10
137.1	1	U	1	Ü	1	U		U	3	7	96	0.15	0,57	0,34	167	0,13	1U	10
147.0	1	U	1	U	11	U	1	U	240	T	115	0.07	0.13	0,20	310	0.04	10	1U
157.0	3	U	3	U	3	U	3	U	290	Т	110	0.47	2.55	10.60	286	0.33	3U	3U
164,0	1	Ų	1	U	1	U	1	U	1	u	103	0.03	0.34	0.17	61	0.05	10	10
177.0	1	U		U	1	U	2		12	T	103	0.05	0.17	8.60	107	ND	Detect	10
187.0	1	U	1	U	1	U	6		3	\neg	100	0.12	0.60	2,20	59	0,03	1U	1U
197.0	3	U	3	U	3	U	170		180		100	0,06	0.43	0,80	94	ND	3U	3U
205,7	1	U		u	1	U	11		8	Т	105	0.08	1.16	5,80	76	0.11	Detect	10
217.0	1	U	1	U	1	U	46		11	T	102	0.10	0.32	2,50	62	0.03	1U	10
227.0	1	U	1	U	1	U	77		14	T	101	0,06	0,09	2,90	43	ND	1U	1U
247.0	10	U	10	U	10	\sqcap	450		130		103	ND	0,06	0.09	54	0.04	10U	10U
272.0	1	U	1	U	1	U	18		64	T	104	ND	0,08	ND	249	ND	1U	1U
282,0	1	U	1	U	1	U	37		21	7	105	0.29	0,55	ND	97	0.03	1U	10
308.5	1	U		U	1	U	41		17	T	104	ND	0,04	ND	59	ND	10	1Ú
317,0	6	U	6	U	6	U	310		150		100	0.03	0,13	0.03	64	ND	6U	6U
327.7	1	U	1	U	1	U	16		10	T	98	0.03	0,21	0.21	50	0.10	10	10
337.0	3	U	3	U	6	П	200		35	T	101	0.05	0,12	0.07	57	0,05	3U	3∪
344,1	3	U	3	U	13		280		21		103	0.10	0.22	0.20	81	0.06	3U	3U
368.4	4	U	4	U	11		310		28	I	109	0.16	0.34	0,48	83	0,08	4U	4U
377.0	3	U	3	U	9	П	280	Г	21	T	99	0,03	0.10	0.05	77	ND	3U	3U
387.0	2		1	U	11	U	46		9	I	97	0.15	0.92	0.41	58	0.11	1U	1U
397.0	1	U	1	U	1	U	3		1	$\neg T$	100	0.18	0.22		37	ND	10	10

							VOC DATA, ug/L								
Depth	Freon 123A C	Freon 123	Q 1.1-Dichloroethane	Q 1.1.1-Trichloroethane Q	Toluene C	Chlorobenzene () m.p-)	Kylene Q	o-Xylene	Q 1.3-Dichlorobenzene	e Q 1,4-Dichlorobenzen	e Q 1 2-Dichlorobenzen	e Q	%ss
77.1	1 (1 1	U 1	U 1 U		1 1	1 1		2 [U]		TUI 1	IUI 1	[U] 1	TÜİ	92
87.1	1 (1	U 1	U 1 U	1 1	1 1	1 1	J	2 U	1	U 1	U 1	U 1	ul	101
97.1	1 L	1 1	U 1	U 1 U	1 1	1 1	1 1	j	2 U	1	U 1	U 1	U 1	U	92
107.1	1 1	1 1	U 1	U 1 U	1 1	1 1	1 1)	2 U	1	U 1	U 1	U 1	U	98
117.1	1 1	1 1	U 1	U 1 U	1 1	1 1	1 1	ار	2 U	1	U 1	U 1	10 1	Ü	111
127.1	1 (1	U 1	U 1 U	1 1	1 1	1	J	2 U	1	U 1	U 1	U 1	U	104
137.1	1 (1	U 1	U 1 U	1 1	1 1	1 1	J	2 U	1	U 1	U 1	U 1	U	96
147.0	1 (1 1	U 1	U 1 U	1 1	1 1	1 1	J.	2 U	1	U 1	U 1	U 1	U	115
157.0	3 L	3	U 3	U 3 U	3 L		3	J	6 U	3	U 3	U 3	U 3	U	110
164.0	1 (U 1	U 1 U	1 (1 1	1 1	J	2 U	1	U 1	U 1	U 1	U	103
177.0	1 (1	U 2	1 0	1 1	1 1	1	U	2 U	1	U 1	U 1	U 1	U	103
187.0	1 (1	U 2	1 U	1 (1 1	1 1	Ü	2 U	1	U 1	U 1	U 1	U	100
197.0	3 1		U 3	U 3 U	3 L	3 1) 3	U	6 U	3	U 3	U 3	U 11		100
205.7	1 1 1	JI 1 T	U 4	1 U	1 1	1 1	1	J	2 U	1	U 1	U 1	U 1	U	105
217.0	1 1	1	U 1	U 1 U	1 (1 1	1		2 U	1	U 1	U 1	U 1	U	102
227,0	1 1	1	U 1	U 1 U	1 (1 1	U	2 U	1	U 1	U 1	U 1	U	101
247.0	10 L		U 10	U 10 U	10 L	10) 10	U :	20 U	10	U 10	U 10	U 21		103
272,0	1 (1	U 1	U 1 U		1 1	1 1	Ú	2 U	1	U 1	U 1	U 1	U	104
282,0	1 1	J 1	U 1	U 1 U					2 U	1	U 1	U 1	U 1	U	105
308.5	1 (1	U 1	U 1 U	1 1	1	1	U	2 U	1	U 1	U 1	U 1	U	104
317.0	6 l	6	U 6	U 6 U	6 L	6) 6		12 U	6	U 6	U 6	U 6	U	100
327.7	1 (U 1	U 1 U	1 l	1 1) 1	U	2 U	1	U 1	U 1	U 1	U	98
337.0	3 (J 3	U 3	U 3 U	3 (3 1	J 3	U	6 U	3	U 3	U 3	U 3	U	101
344,1	3 L	J 3	U 3	U 3 U			3	U	6 U	3	U 3	U 3	U 3	U	103
368.4	4 (J 4	U 4	U 4 U) 4	U	8 U	4	U 4	U 4	U 4	U	109
377.0	3 (J 3	U 3	U 3 U	3 (3	3	U	6 U	3	U 3	U 3	U 3	U	99
387.0	1 1	1	U 1	U 1 U			J 1	U/	2 U	1	U 1	U 1	U 1	U	97
397.0	1 1	1 1	U 1	U 1 U	1 l	1	J 1	U	2 U	1	U 1	U 1	U 1	U	100

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.
NS = Not Sampled

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiting SEI#: 03-1402 Date Sampled: 10/21-10/30/2003 10/21-10/30/2003 Date Analyzed: 10/30/2003 Report Date:

HOLE ID =P49																		
					VOC E	DATA	, ug/L						1	NORGANIC DATA, mg/L				COMPOUNDS
Depth	Vinyl Chloride															1	1.1-DCE / Freon	
		9 1	-Dichloroethene	Q g	-Dichloroethene	Q	Trichlorgethene	Q	Tetrachloroethene	Q	<u>% SS</u>	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
74.3	1	U	1 1	U	1	U	11	U	1	U	94	0.07	0.17	0.06	6.75	ND	1U	10
84.3	11	U	1 1	Ų	1	U	1	U	11	U	93	0.10	0,25	0.2	6.4	ND	1U	10
94.3	1	U	1 1	U	1	U	1	141	5	П	96	0,35	0.61	0.46	49.5	ND	10	10
104.3	1	U	1 1	U	1	U	1	U	2		95	0,08	0,14	0.11	78.0	ND	10	10
114.3	1	U	1	U	1	U	11	U	12		111	0.28	0.36	0.45	90.5	0.13	1U	10
124.3	1	U	1 1	U	4		11		210		106	0.18	0.27	0.24	16.5	0.05	10	10
134.3	12	U	12	U	40		12	U	1900		107	0.12	0.20	0.15	20.5	0.03	12U	12U
144.3	1	U	1 1	U	5		1		180		107	0.36	0.52	0.58	24.25	0,11	1U	1U
167.3	1	U	1	U	1	U	1	U	1	U	94	0.09	0.16	0.07	67.5	0.09	1U	1U
177.3	1	U	1	U	1	U	1	U	1	U	96	0,02	0.03	ND	89.5	0.02	10	1U
222,3	1	U		U	4		1	T	20	П	93	0.38	0.88	1.7	375	0.23	1U	1U
232.3	1	U	1	U	3		1	U	3	П	92	0,61	1,39	1.2	102	0.41	1U	10
239.3	1	10	1	U	1	U	1	10	1	U	97	0.42	0.49	0.63	70	0.27	1U	1U
249.3	1	U	1	U	1	U	1	U	6		108	0.01	0.03	0.03	310	0.06	10	1U
261.0	1	U	1	U	1	U	1	U	8		101	0,07	0,14	0.09	468	0.02	10	10
269.3	1	U	1	U	20	U	21		91		108	0.20	0.78	NC	314	0.1	10	1U
284,3	1	U	1	U	1		69		47	Π.	108	0.21	0.58	1.6	376	ND	Detect	1U
314.0	1	UJ	1	U	1	U	29	T	37		105	0,26	0.36	3,8	575	0.12	10	10
324.0	1	UJ	1	U	1	U	31		87		112	0.07	0.15	0.21	590	0.04	1U	1U
333,0	3	U	3	U	3	U	100	П	180		99	0.18	0.38	0.33	487	0.12	3U	3U
340.8	3	U	3	U	3	U	110		200		106	0.05	0.09	0.16	510	0.08	3U	3U
394.1	1	U	1	U	1	U	3		26		112	0.44	1.07	0,21	552	0.17	10	10
423.0	1	U	1	U	1	U	2	T	45		111	0,07	0,16	0.08	667.5	0.05	1U	1U
444.1	1	U	1	U	1	U	1	U	66		90	0.30	0.45	0.22	850	0.15	1U	10
463.2	1	UJ	1	U	1	U	12	П	33	П	84	0.33	0.58	0.54	840	ND	10	10

Depth	Freon 123A	Q	Freon 123	Q	1,1-Dichloroe	thane C	1.1.1-1	richloroethan	e Q	Toluene	Q	Chlorobenzene	Q	VOC DATA, ug/L Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q 1	3-Dichlorobenzene	Q 1.	1-Dichlorobenzene	Q 1.2	-Dichlorobenzen	e Q	%S\$
74,3	1	TUT	1	TUT	1	TÜ		1	TUT	1	ΤŪ		ŪΤ	1	TŪT	2	TUI	1	TUT		ÜΓ	1 1	Ul	1	U	94
84.3	1	TUI	1	U	1	T.	1	1	lul	1	U	1	U	1	U	2	TU	1	lul	1	ul	1	U	1	U	93
94,3	1	U	1	Tul	1	1	1	1	U	1	U	1	U	1	U	2	U	1	u	1	U	1	U	1	U	96
104.3	1	TU	1	Ü	1	L	1	1	U	1	U		U	1	U	2	U	1	U	1	U	1	u	1	U	95
114.3	1	U	1	U	1	T	1	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	111
124.3	1	U	1	U	1	L	j I	1	U	1	TU	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	106
134.3	12	U	12	U	12	ι	1	12	U	12	U	12	U	12	U	24	U	12	U	12	U	12	U	12	U	107
144,3	1	U	1	U	1	L	j l	1	U	1	U	1	U	1	U	2	U	1	U	1	u	1	U	1	U	107
167,3	1	U	1	U	1	I	7	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	94
177.3	1	U	1	U	1	I	J	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
222.3	1	U	1	U	1	- 1	3	1	U	1	U		U	1	U	2	U	1	U	1	U	1	U	1	U	93
232.3	1	U	1	U	1	j.	J Company	1	U	1	U	1 1	U	1	U	2	U	1	U	1	U	1	Ü	1	U	92
239.3	1	U	1	U	1	L	1	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	97
249.3	1	U	1	U	1	U	J	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
261.0	1	U	1	U	1	L	3	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	101
269,3	1	U	1	U	1	- L	7	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	2		108
284.3	1	U	1	U	1	- (j	1	U	1	u	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
314.0	1	U	1	U	1	I	J.	1	U	1	Tu.	1	U	1	U	2	U	1	U	1	U	1	U	1	U	105
324.0	1	U	1	U	1	L	J.	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	112
333.0	3	U	3	U	3	ı	J	3	U	3	U	3	U	3	U	6	U	3	U	3	U	3	U	3	U	99
340.8	3	U	3	U	3	T.	J	3	U	3	U	3	U	3	U	6	U	3	U	3	U	3	U	3	U	106
394,1	1	U	1	U	1	ı	1	1	TU	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	112
423.0	1	U	1	U	1	1	7	1	u	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	111
444.1	1	U	1	U	1	T.	J	1	u	1	U	1	U	1	U	2	U	1	Tul		U	1	U	1	U	90
463.2	1	U	1	U	1	l	J -	1	U	1	Ū		U	1	U	2	TU	1	Tu	1	Ü	1	Ū	1	U	84

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled

Client: Location:

Hicksville, NY Groundwater Profiling 03-1402

Project ID:
SEI #:
Date Sampled:
Date Analyzed:
Report Date: 10/21-10/29/2003 10/21-10/29/2003 10/29/2003

HOLE ID =P50															
0	Vinyl Chloride			VO	CDATA	l, ug/L				11	NORGANIC DATA, mg/L			COELUTING	OMPOUNDS
Depth	VIIIVI CHROINE	Q t-Dichi	orcethene Q	c-Dichloroethen	e Q	Trichloroethene	Q Tetrachloroethene Q	% SS 96	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freen 113	1,2-DCA / Benzene
82.9	1	U	1 0	1	U	3	2	96	2.79	14	0.59	193	ND	10	10
89,9	11	U	1 U		U	1	U 1 U	100	11.00	12	0.35	8	ND	10	10
99.9	1	U	1 U	1	U	5	14	102	17.7	20	0.47	13.25	0.02	10	10
109.9	190		1	13		8	33	102	23,7	27.4	0.6	11.8	0,07	Detect	10
119,9	200		12 U	1200		220	360	102	36,80	41.2	0.6	16.5	0.09	Detect	12U
129,9	41		20 U	1500		550	1100	107	29.30	32.4	0,41	22.6	ND	Detect	20U
139,9	65		12 U	1000		230	300	96	26.00	26,6	0,33	25.7	ND	Detect	12U
149,9	57		12 U	1300		140	470	108	31.70	32.6	0.37	34.5	ND	Detect	12U
159,9	1	U	1 U	4		24	160	108	0,38	0,68	0.26	113,25	0,26	10	10
169.9	1	U	1 U	1	U	1	43	98	0.12	0,70	0.18	257	0,06	10	10
179,9	1	U	1 U	1	U	9	99	107	0,18	0,64	0.52	260	0,11	1U	10
189.9	1	U	1 U	1	U	1	U 8	103	1,00	2.90	1.4	290	0.58	10	10
198.5	1	U	1 U	1	U	1	U 25	107	0.52	1.52	3,9	314	0.16	10	10
206,6	1	U	1 0	1	U	1	U 15	109	0.34	0.56	1.6	272	0.04	10	10
242.6	1	U	1 U	1	U	1	36	97	0.21	0,40	2.7	317	0.04	10	10
249.9	1	U	1 4	7		17	27	103	0,03	0,17	4.3	168,25	0.07	Detect	10
259,9	1	U	1 1	1	U	5	30	107	0.13	0,28	2.8	308	ND	10	10
267.4	1	u	1 4	19		37	48	107	0,14	0.24	3.8	252	0.04	Detect	10
279.9	1	ul	1 (U	4		12	38	108	0,23	0,36	3.4	344	0.06	10	10
289.9	1	U	1 U	7		17	38	113	0,10	0,17	6,8	332	0.03	10	10
299.2	1	U	1 U	1	U	25	55	110	0,34	0,56	7.0	475	0.07	10	10
309.9	1	U	1 U	1	U	28	76	107	0.16	0.22	7.4	590	ND	Detect	10
319.9	6	U	6 L	6	U	360	310	106	0.29	0.37	3.4	420	0.04	6U	6U
327.1	6	U	6 L	6	U	260	390	113	0.14	0,20	0.03	380	ND	6U	6U
342.6	3	UJ	3 (3	u	44	140	112	ND	ND	0.11	605	ND	30	3U
349,9	111	U	1 L	1	U	21	66	98	0,02	0,03	0,02	502,5	ND	10	10
359,9	1	U	1 1	1	U	1	5	89	0,01	0.05	ND	424	0.03	10	10
370.5	1	U	1 (1 1	U	3	28	91	0.04	0,06	0.08	422	0.02	10	10
376.7	1	U	1 (1 1	U	3	33	96	0.01	0.01	0,03	494	ND	10	10
385,9	1	U	1 1	1 1	U	1	U 2	111	0.03	0.05	0.02	94.75	0.03	10	10
413,4	1	U	1 1	1	U	1	U 36	91	0.01	0.41	ND	645.8	ND	10	10
424.1	1	U	1 1	1 1	U	2	14	106	0.04	0,14	0.06	603	0.03	10	10
439.9	1	U	1 1	1 1	u	5	15	92	0.02	0.14	0,05	730	0.02	10	10

1															
							VOC DATA, ug/L								
<u>Depth</u>			Q 1.1-Dichtoroethane	@ 1,1,1-Trichloroethane	Q Toluene 0	Chlorobenzene C	Ethylbenzene	Q	m.p-Xylene	Q o-Xylene	Q 1,3-Dichlorobenzene	Q 1,4-Dichlorobenzene	Q 1,2-Dichlorobenzene		%SS
82,9	1	U 1	U 1	U 1	U 1 L	1 1	1 1	U	2	U 1	0 1	U 1	UI 1	U	96
89,9	1	U 1	U 1		U 1 L	J 1 L	1 1	U	2	υ 1	U 1	U 1	U 3	1	100
99,9	1	U/ 1	u/ 1	U 1	U 1 L	1 1	1 1	U	2	U 1	10 1	ŭl i	U 1	U 1	102
109.9	1	U 1	U 1	U 1	U 1 L			U	2	U 1	U 1	V 1	Ü 1	U 1	102
119.9	12	U 12	U 12	U 12	U 12 I	12 L	12	Ü	24	U 12	U 12	U 1 U 12	U 12	U 1	102
129.9	20	U 20	U 20	U 20	U 20 L	1 20 L	20	U	40	U 20			U 20	U 1	107
139.9	12	U 12	U 12	U 12	U 12 U	12 1	12	U	24	U 12	U 12	U 20 U 12	U 12	U	96
149.9	12	U 12	U 12	U 12	U 12 L	12		U	24	U 12	U 12	U 12	U 12	U 1	108
159.9	1	U 1	U 1	U 1	U 1 L	1 1	1	U	2	U 1	U 1	U 1	U 1	U 1	108
169.9	1	U 1	U 1	U 1	U 1 I	1 1	1	U	2	U 1	U 1	U 1	U 1	U	98
179.9	1	U 1	U 1	U 1	U 1 I	1 1	1	U	2	U 1	U 1	U t	U 1	Ü ,	107
189,9	1	U 1	UI I	U 1	U 1 I	1 1	1	U	2	U 1	U 1	U 1	U 1	U	103
198.5	1	U 1	U 1	U 1	U 1 I	1 1	1 1	U	2	U 1	U 1	U 1	U 1	U	107
206,6	1	U 1	ul 1	U 1	U 1 U	1 1	1	U		U 1	U 1	U 1	U 1	U	109
242.6	1 (U 1	UI I	U 1	U 1	1 1	1 1	U	2	U 1	U 1	U 1	U 1	U	97
249.9	1	U 1	U 1	U 1	U 1 I	1 1	1 1	Ų	2	U 1	U 1	U 1	U 2	7	103
259,9	1	U 1	U 1	0 1	U 1 I	1 1	1 1	U	2	U 1	U 1	U 1	U 2	U	1
267.4	1	U 1	U 1	U 1	U 1 I	1 1	1 1	U	2	U 1	U 1	U 1	U 3		107
279.9	1	U 1	U 1	U 1	U 1 I	JI 1 13	1 1	U	2	U 1		Ú 1	U 2		108
289.9	1	U 1	ul t	U 1	U 1 I	1 1	1 1	U	2	U 1	U 1	U 1	ປ 2	7	113
299.2	1	U 1	U 1	U 1	U 1 1	1 1	1	U	2	U 1	U 1	U 1	U 2		110
309.9	1	U 1	U 1	U 1	U 1		1	U	2	U 1			U 13	-	107
319.9	6	U 6	U 6	U 6	U 6	6 1	6	U	12	U 6	U 6	U 6	U 11 I		106
327.1	6	u 6	U 6	U 6	U 6 I	6 1	1 6	U	12	U 6	U 6	UI 6	U 6	U	113
342,6	3	U 3	U 3	U 3	U 3	3 1	3	U	6	U 3	U 3	U 3	U 3	U .	112
349,9	1	U 1	U 1	U 1	U 1		1 1	U	2	U 1	U 1	111 1	Ul 1	U	98
359.9	1	U 1	U/ 1	10/ 1	ŭ 1 li			U	2	U 1		U 1		Ü	89
370,5	1	U 1	Ü 1	TUT 1	U i i	1 1		U	2	U 1	U 1	U 1	U 1	U	91
376,7	1	U 1	U 1	U 1	U t			U	2	U 1	U 1	U1 1	ŭ i	Ü	96
385.9			Ü 1	U 1	Ü 1	1 1	il i l	Ü	2	U 1	tul i	ül i			111
413.4	1		ŭ! i	Tul i	ŭ i li	1 1	1 1	lú l		U 1	U 1	ŭ i	U 1	U	91
424.1	1		ul i	lu i	ŭ i i	1 1	j 1	Ü	2	U 1	U i	ÚT i	U 1	U	106
439.9	1		ul i	tūt i	u i i			ii -	2	ŭ 1	10 1	ūt i	ŭ i i		92

GTEOSI Client: Location: Hicksville, NY Project ID: Groundwater Profiling SEI #: 03-1402 Date Sampled: 10/21-10/30/2003 Date Analyzed: 10/21-10/30/2003 10/30/2003 Report Date:

HOLE ID =P51	T			_							$\neg \Gamma$				***************************************			
					VOC D	ATA	, ug/L				- 1		1	NORGANIC DATA, mg/L			COELUTING	COMPOUNDS
Depth	Vinyl Chloride	a	t-Dichloroethene C	2	c-Dichloroethene	0	Trichloroethene	0	Tetrachioroethena C	2 % SS		Fe ⁺²	Fe Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freon 113	1,2-DCA / Benzene
78.0		m	1 1		1	٦Ť٢		ग्वींग	1 1			0.25	0.63	0.57	24	0.24	1U	1U
88.0	1 1	-				111		15		102		0.19	0.64	0.34	12	0.10	10	10
97.8	 	111	1 1		-	111		101	15	102		0.18	0.45	0,34	30	0.10	10	1U
107.8	 	111	1 1			101	5	++	59	106		0.16	0.09	0.05	35	ND	1U	10
117.8	3	u	3 1		4	+++	41	++	150	105	-+	8.50	9.5	0.80	31.3	0,05	Detect	3U
127.8	3	Ū.	3 1		<u> </u>	++	49	++	140	96	_	13.10	15.7	3.6	28	0.24	Detect	3U
137.8	8	U	8 0		33	+	140	+	770	109	-	NS	20	NS NS	23.25	NS NS	80	8U
147.8	4	U	4	υl	18	11	81	11	380	114		14.40	15.50	0.30	13.6	0.03	4U	40
158,0	3	U	3 (u	3	U	63	+	280	107		2.77	2.89	0.28	44,25	0.04	3U	3U
167,8	1	U	1 (υT	1	U	1	+	5	99	_	0,11	0.24	0,10	154	ND	1U	10
177.8	1	U	1 (υl	1	U	2	+	6	92		0.17	0.42	0.24	189	0.06	1U	10
187.8	1 1	U	1 1	υl	27	\top	26		28	104		NS	NS	NS	NS	NS	Detect	1U
201.2	1	U	1 [U	63	\Box	58		61	112		0.08	0,08	8,00	142	0,02	10	1U
226,8	1 1	U	1 /1	üΪ	4	\Box	9		20	101		0,25	0.43	4.2	244	0.06	10	1U
236.8	1	U	1 (Ū	4	T	10		25	102		0.39	0.54	3,6	148	0.05	1U	10
246,8	1	U	1 (Ü	18		130		150	107		0.04	0.11	3.8	137.5	ND	Detect	10
256.8	1	U	1 (U	19		47	П	53	104		0.49	1.13	5,6	116	0.09	10	10
266,7	1	U	1 1	U	4		24		32	100		0,17	0.79	5,4	136	0.06	10	10
276.8	1	U	1 [U	41		54		65	116		0,26	0,36	5,0	114.7	0.03	10	10
286,8	1	U	1 (U	1	U	11		9	108		0.10	0,13	5.2	119.8	ND	1U	1U
295.3	1	U	1 (U	1	U	13	TT	24	109		ND	0.07	4.0	176	ND	1U	10
301.1	1	U	1 1	U	1	U	18		21	90		0.28	0.31	8.0	338	0.08	1U	1U
321.0	1	U	1 1	U	2	П	180		140	108		0.26	0.30	2.6	365	0.05	Detect	1U
327.9	6	U	6 (U	6	U	600	TT	350	110		0.10	0,13	0,03	222	ND	Detect	6U
336.9	6	U	6 (6	U	530	$\perp T$	350	97		0.24	0.28	0.2	300	0.03	6U	6U
346,9	3	U	3 (3	U	72	LI	270	96		0,09	0,09	0.08	388	ND	3U	3U
363.3	1 1	UJ	1 (-	1 1	U	3	$\perp T$	26	116		0.02	0,08	0,07	359	0.05	1U	1U
371,8	1 1	IN		U	1	U	3		44	115		ND	0.07	0.05	685	ND	10	1U
381.8	1 1	UJ	1 1	U	1	U	7	$\perp \perp$	98	116	-I	0.05	0.09	0.15	239	0.07	1U	1U

												VOC DATA, ug/L												
<u>Depth</u>	Freon 123A	<u>Q</u> Freon 123	Q	1,1-Dichloroethane	Q	1.1.1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q	1.3-Dichlorobenzene	1.4-Dichlorob	enzene	1,2-Dich	lorobenzene	Q	%SS
78.0	1	U 1	U	1	U	1	U	1	U	1	U		U	2	TUI	1	TUI	1 1	1	T	J	1	U	93
88.0	1	U 1	Ü	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1 (1		J	1	U	102
97.8		U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1 (1		J	1	U	106
107,8	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1 (1		J	1	U	106
117.8	3	U 3	U	9		3	U	3	U	3	U	3	U	6	U	3	U	3 (3		J	3	U	105
127.8	3	U 3	U	6		3	U	3	U	3	U	3	U	6	U	3	U	3 1	J 3		J	3	U	96
137,8	8	U 8	U	8	U	8	U	В	U		U	8	U	16	U	8	Ü	8 1	J 8		J	8	U	109
147,8	4	U 4	U	4	U	4	U	4	Ü	4	υ	4	U	8	U	4	U	4 (1 4		J	4	U	114
158.0	3	U 3	U	4		3	U	3	U	3	U	3	U	6	U	3	U	3 (3		U	3	U	107
167.8		U 1	U	1	U	1	U	1	U		U	1	U	2	U	1	Ju	1 1	3] 1		Ü	1	IUI	99
177.8		U 1	U	1		1	U	1	U	1	U	1	U	2	U	1	U	1 (1		J	1	υ	92
187.8	1	U 1	U	1	U	1	U	1	Ū	1	U	1	U	2	U	1	U	1 1	1		J	8		104
201.2	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	u	1 1	1		U	2		112
226,8	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U		1 1		U	2		101
236.8		U 1	U	1	C	1	U	1	U	1	U	1	U	2	U	1	U	1 1	1	1	U	1	U	102
246.8	1	U 1	U	1	C	1	U	1	U	1	U	1	U	2	U	1	ŢŪ	1 1	1 1		U	9		107
256,8		U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1 1	J 1		U	4		104
266,7	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1 1	J 1		U	3		100
276,8	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	J 1		Ü	1	U	116
286,8	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U				Ü	2		108
295.3	1	U 1	U	1	U		U	1	U	1	U	1	U	2	U	1	U	1 1	1 1		U	7		109
301,1	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	u	1	U	1 1] 1		Ü	4	11	90
321.0	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	. 1	u	1 1] 1		U	3		108
327.9		U 6	U	6	U	6	U	6	U	6	U	6	U	12	U	6	U	6) 6		U	6	U	110
336.9	6	U 6	U	6	U	6	U	6	U	- 6	U	6	U	12	u	6	U				U	9		97
346,9		Ü 3	U	3	U	3	U	3	U	3	U	3	U	6	u	3	U	3	J 3		U	3	U	96
363,3	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	Ü	1	J 1		Ų	1	U	116
371.8	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U				U	1	U	115
381.8	1	U 1	U	1	Ü	1	U	1	U	1	U	1	U	2	U	1	U	1	1		U	1	U	116

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %,SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled

GTEOSI Client: Hicksville, NY Location: Project ID: Groundwater Profiling SEI#: 03-1402 Date Sampled: 11/04-11/20/2003 Date Analyzed: 11/04-11/20/2003 11/20/2003 Report Date:

HOLE ID =P52																	
				VOC D	ATA	, ug/L						i	NORGANIC DATA, mg/L	L		COELUTING	COMPOUNDS
Depth	Vinyl Chloride														1	1,1-DCE / Freon	
		Q t-Dichlorgethene	0 9	c-Dichloroethene	Q	Trichlorgethene	Q	Tetrachloroethene	Q	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
80,0			U	1	U	1	U	1	U	91	0.03	0.12	ND	ND	ND	1U	10
90.0	1	U 1	U	1	U	1	U	1	U	107	0,06	0,11	0.04	ND	ND	10	10
100,0	1	U 1	U	1	U	1	U	1	U	90	0.03	0.18	0,07	58	ND	10	10
110.0	1	U 1	U	- 1	U	1	U	1	u	92	0.27	1.57	0.47	22	ND	10	10
120.0	1	U 1	U	1	U	1	U	1	U	102	0.11	0,35	0.27	22	0.06	1U	10
130.0	1	ប 1	U	1	U	1	U	1	U	89	0.11	0.28	0.08	32	ND	10	10
140.0	1	U 1	U	1	U	1	U	2		90	0.14	0.18	0.05	35	ND	1U	1U
150.0	1		U)	1	U	1	U	11		86	ND	0.10	0.04	24	ND	1U	10
160.0	1	U 1	U	1	U	1	U	1	U	100	ND	0,13	0,11	42	ND ND	10	10
170,0	1	U 1	U	1	U	1	U	1	U	109	ND ND	0.09	0.06	40	ND	10	1U
180,0	1	U 1	U	1	U	1	U		U	90	0.31	0.66	0.20	119	0.04	10	10
224.5	1	U 1	U	1	u	1	U	1	U	107	ND	0.16	0.05	86	0.02	10	10
232.3	11	U 1	U	1	U	1	U	2	T	89	ND	0,03	ND	94	0.04	10	10
243.7	1	U 1	U		u	4	П	21		102	0.17	0.34	0,39	93	0.05	10	10
254,5	1	U 1	U	1	U	18	ТΤ	60	П	96	0,06	0.18	0.18	370	0,05	1U	10
264.5	1	U 1	U		U	11	П	68		102	0.06	0.27	0.29	281	0,07	1U	10
274.5	1	U 1	U	1	U	15		46		94	0.13	0.27	0.20	478	0,05	10	10
283,5	1	U 1	U		u	1	П	9		86	ND	ND	0,03	440	0,04	10	10
291,7	1	U 1	U		U	2	П	12	т	87	0.08	0,17	0.22	470	0,07	1U	10
299.5	1	U 1	U		U	1	U	4		92	0.06	0.14	0.13	450	0.03	10	10
319.2	1	U 1	U	1	U	10		140		101	0.18	0.39	0.20	283	0.11	1U	10
327.2	4	U 4	U	4	U	4	U	350	П	108	0,04	0,22	0,28	325	0.05	4U	4U
339.2	3	U 3	U		U	5	\Box	130		106	0.14	0.22	0,44	133	0,08	30	3U
364.2	1		U		U	1	U	33		93	ND	0.04	0.05	242	0.04	1U	10
374.4	1	U 1	U	1	U	1	u	3		93	ND	0.06	0.06	425	0.03	1U	10
395,4	1	U 1	U	1	U	1	U	28		101	0.06	0,20	0,17	665	0.05	10	1U
404.5	1	U 1	U	1	U	2		17		98	0,08	0.34	0.15	608	0,05	10	10
414.2	1	U 1	U	1	U	7	П	18		93	ND	0,03	0,03	835	0,04	10	10
444,4	1	U 1	U	1	U	3	TT	68		93	0.12	0,68	0.26	865	0.05	10	10
474.7	1	U 1	u	1	u	1	U	4		106	0.40	2.06	1.1	793	0.4	10	10
483,4	1	U 1	U	1	U	1	U	5		84	0,11	0.49	0.21	485	0,05	10	10

	T																							
Depth	Freon 123A	0	Freon 123	٥	1 1-Dichloroethane	0	1_1_1-Trichloroethane Q	Toluene	0	Chlorobenzene C	VOC DATA, ug/L Ethylbenzene	0	m.p-Xylene	0	o-Xviene	0.1	3-Dichlorobenzene	0.1	L-Dichlorohanzana	0.1	2-Dichlorobeoz	ene O		%SS
80.0	1	ाता	1	ाँग	1	TÜİ	1 1		Ü			Ū	2	TÜT		ÜΪ		Ü		7	1	101		91
90.0	1	+ ii t	1	tul	1	tül	1 U	1	U	1 1	1	tüt	2	tül		Ü		ü	1	iil-		l ŭ		107
100.0	 	Tül	-	tůl	<u>_</u>	tül	1 10	1	ΙŬ		1	tŭt	2	tŭt		ŭ		ŭ		iit-		- lül		90
110.0	 	- jul	<u>_</u>	tul		Tü	1 10		υ		1	tüt	2	tüt		U		Ü		ŭl-		lül		92
120.0	 	10		Ü		ΤŬ	- 1		Ü	1 1		töl	2	Tü		u		Ü		ŭ		tŏl		102
130.0	 	-til	i	tůt		tül	1 1	i	lŭ	1 1	 	111	2	tül		ŭ		ŭ		ü		tül		89
140.0	1 1	Tül		Ü	1	lü	1 0		Ιŭ			tül	2	l ü		U		ŭ	1	ŭl-	<u>-</u>	- lül		90
150.0	1	Tül	1	tul		tül	1 0	1	Ū	1 1	1	tüt	2	til	1 1	111		ul	1	ŭ		Ū		86
160.0	1 1	101	1	tul	1	111	1 0	1	Ü	1 1	1	tiil	2	111	1 1	ū			1	Ü	1	tůt		100
170.0	1 1	tüt	1	Ü	1	Tül	1 1	1	Ü	1 1		10	2	10	1	ū	1	U		11	i	ŭ		109
180.0	1	u	1	Ū	<u>i</u>	tũ	1 11	1	Ü	1 1	1	111	2	101	1	Ū.		U	1	111	1	Ü		90
224.5	1 1	Tu l	1	tul	1	u	1 U	1	- tũ	1 1	1	tul	2	Tu I	1	Ū		ul-	1	üΤ	1	U		107
232.3	1	- u	1	tul	1	U	1 U	1	Ü	1 1	1	10	2	Til	1	Ū	1	Ü	1	ül	1	Ü		89
243.7	1	Tül	1	Tu l	1	Ιū	1 0	1	TÜ		1	10	2	10	1	Ū.	1	Ū	1	ū	1	Ü		102
254.5	1	fül	1	tut	1	Tul	1 U	1	Ü	1 1	1	Tul	2	Tül	1	ū		U	1	üΤ	1	lul		96
264.5	1	U	1	lul	1	Ü	1 U	1	U	1 1	1	10	2	Ü	1	U		Ü	1	υl	1	U		102
274,5	1	Tül	1	Tul	1	Tu	1 U	1	U	1 1	1 1	Τū	2	U	1	U		Ū.	1	Ū	1	U		94
283.5	1	u	1	U	1	Tu	1 U	1	U	1 1	1	Tul	2	101	1	U	1	U	1	υl	1	U	~~	86
291.7	1	tul	1	Ü	1	Ų	1 U	1	Ų	1 1	1	Tül	2	Tül	1	U	1	U	1	υl	1	U		87
299,5	1	Tül	1	Ü	1	ΙÚ	1 U	1	Ü		1	Tül	2	Tül	1	Ū		Ü	1	Ū	1	U		92
319.2	1	Tul	1	u	1	U	1 U	1	U	1 1	1 1	Tul	2	Tul	1	u	1	U	1	U	1	U		101
327.2	4	101	4	Tul	4	ΙÚΙ	4 U	4	U		1 4	túl	8	101	4	U	4	U	4	U	4	U		108
339.2	3	Tüt	3	Tul	3	TÜ	3 U	3	Ū	3 1	3	tüt	6	tüt	3	Ū	3	Ū	3	U	3	U		106
364.2	1	tüt	1	Tu	1	tu	1 U	1	Ü		1 1	Tu	2	U	1	U		Ū	1	U	1	U		93
374.4	1	ū	1	U	1	U	1 U	1	U		1	U	2	U	1	U	1	U	1	U	1	u		93
395.4	1	Tul	1	Tül	1	Ü	1 U	1	U	1		10	2	Ü		υl	1	U	1	U	1	U		101
404.5	1 1	Tül	1	tüt	1	ű	1 0	1	ΤŪ	1		Tül	2	tů		ΙŪΤ		Ū	1	Ū	1	U		98
414.2	1	-tū	1	Tül	<u> </u>	Ū	1 U	t i -	Ü	1 1		tu	2	U		ul		υT	1	Ü	1	U		93
444.4	1	tul	1	tul	1	Ü	1 U	1	- lu	1 1	1 1	٦ŭ	2	10	1	Ū	1	Ū	1	Ü	1	- lūl		93
474.7	1	101	1	Tül	1	ΙŪ	1 U	1	U	1 1	1 1	10	2	U	1	Ū	1	Ū	1	ūΓ	1	U		106
483.4	1	10	1	tül	1	ŭ	1 0	1	10	1 1		tăt	2	۱ũ		17		Ū	1	H	1	Ü		84

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

NS = Not Sampled

GTEOSI

Client: Location: Project ID: SEI #: Hicksville, NY Groundwater Profiling 03-1402 Date Sampled: Date Analyzed: Report Date: 11/20-12/12/2003 11/20-12/12/2003 12/12/2003

HOLE ID =P53					VOC DA	TA 11=11					7.7.7.7.			INORGANIC DATA mg/L			COELUTING	COMPOUNDS
Depth	Vinyl Chloride											Fe*2						1.2-DCA / Benzene
<u> </u>			t-Dichloroethene C		c-Dichloroethane		chloroethene		Tetrachloroethene		% SS		Fe, Total	Ammonia 0.07	Chloride	Chlorine, Total ND	1.1-DCE / Freon 113	1,2-DCA7 Benzene
76.4	1	u	1 6		1			u		U	84	0.06			5	ND ND	10	10
86,4 96,4	1 1	u		4-		u		U		U	81 82	ND	0.07	0.05	56	0.04	10	10
106.4	1	U		1				101		U		ND	0.05	0.04	69	0.04	10	10
	ļ	U		4			1	lu l		Į.	100	ND	0.05	0.09	109	0.04	10	10
116,4 126,4	 		1 1		1 1		!	10	2	+		0.05	0.14	0.09		0.04	10	10
136.4	20	U	20 1		390	U	1 140	++	30 9400	\vdash	111	0.10	0.25	0.10	52 20	ND ND	200	20U
136.4	12			3	87			++		1-1	106	0.04	0.25	0.22		ND ND	12U	12U
146.4	12	U	12	-	8/		29	1	1600	+	110		0.13	0.06	35 84	0.04	10	10
165.7	 	님		4		u l		101	9 4	+	101	0,06	0,26	0.07	89	0.03	10	10
176,4				1			1	101	15	+	96	0.05	0.11	0.07	85	0.05	10	10
188 9	10	U	10		63	<u></u>	150	- 0	650	1-1	104	0,05	0.11	0.22	110	ND ND	100	100
212.6	1	Hill	1 1		03		1	tut	2	++	115	0.06	0.11	1.6	92	ND	10	10
221.4	1	Ü			27	<u></u>	20	-14	88	1-1	107	0.18	0.44	2,4	107	0.07	10	10
231.4	6	10		-	170		91	++	220	++	98	0.20	0.22	6,4	182	ND ND	6U	6U
238.6	+	u		ü	24		10	-++	24	++	97	0.05	0.10	7.4	215	ND ND	10	10
248.4	 	ŭ		Ü		-	1	111	3	+	94	0.06	0.14	5,8	239	0.03	10	10
256.4	+	ŭ			20	1	- 6	+*+	21	+	102	0.15	1.01	4.2	218	0.04	10	10
266.4	1 1	tül		1	1 1	ű	1	lu/	5	11	108	0.14	0.23	0.28	80	0.08	10	10
276.4	1	111	iti	11	1	u	12	+*+	96		96	0.09	0.13	0.15	252	0.05	10	10
286.4	3	tül	3 1	u l	3	ul-	23	++	140	11	99	0.17	0.32	0.36	262	0.10	3U	3U
295.5	3	Tul	3 1	ū†	3	Ü	61	11	110	11	100	0.43	0.90	2,4	357	0,20	3U	30
306.0	1 1	Ü		ū	1	ū	10	11	42		101	0.09	0.16	1,6	430	ND	10	10
313,3	1	Ü	1 1	ū	1	ū	16	1	96		107	0,24	0.43	0.7	500	0.12	10	10
331.1	1	U	1 1	υl	1	U	25		79	T	102	0,19	0,27	0.9	543	0.07	10	10
340,1	3	U	3 (u	3	U	3	Ü	190		112	ND	0,04	ND	237	0.03	3U	3U
366.7	4	U	4 1	υl	4	u	7	11	250	T	108	0.09	0.27	0,15	333	0,10	4U	40
391.6	1	Ü		ũ 🗀	1	U	4		23	T	115	0.05	0,13	0,04	473	0,06	10	10
401.1	1	U	1 1	u	1	U	3		15		79	0.16	0.28	0.36	548	0.09	1Ų	10
410,2	1	U	1 1	U	1	U	3		25		106	0,06	0.35	0,13	705	0,03	1U	10
426.8	1	U	1 1	ü	1	u	1	U	1	U		ND	0,04	0.07	184	0.02	1U	10
480,9	1	U	1 1	U	1	U	1	U	120		96	0.39	1,14	0,15	795	0,30	10	10
487.4	1	U	1 1	u	1	U	1	U	80	F	110	0.06	0.10	0.08	776	0,06	10	10
497,0	1	U	1 1	U	1	U	1	U	25	1	110	0.18	1.00	0,12	480	0,09	10	10
504.8	1	u	1 1	u	1	U	1	U	31		96	0,05	0.08	0,05	573	0,06	10	10

Depth	Freon 123A	0 5	on 123 (1.1-Dichloroethane	A 4 4 4 Trians	4	Toluene	Q Chlorobenzene	VOC DATA, ug/L © Ethylbenzene		m.p-Xylene	^	o-Xvlene	0.1	3-Dichlorobenzene	O 1 4 Dioblos	ohonzono	O 12 Dichlor	rehanzene (^	%SS
76.4	1	TÜ	1 1		U 1	IU	1		II 1	TÜ	2	T (1)	1	TÜT "		U 1		U 1			84
86.4	1	181	i fi	1 1	U 1	- 10		10 1	ň) i	10	2	ful -	1	U		0 1		iii 1		U	81
96.4	 	10	1 1	il i	1 1			t ut i t	ŭ 1	- Hill	-	u	1	Tul-		ŭ i		ŭ i		<u> </u>	82
106.4	 	u	1		u i	- lü			Ü 1	Tü	2	U	1	Tu		U 1		ŭ i		Ŭ	100
116.4	·	Tul	i - li		tül i	- 101-		U 1	ŭ i	lŭl-	2	tül	1	151-		ŭ i		Ŭ 1	ti	U	107
126,4	i	tül	1 1		tut i	- lŭt			<u> </u>	U	2	101	1	tül		ŭ 1		U 1		Ü	111
136,4	20		20 1	20	U 20	- lul	20		U 20	tŭt	40	U	20	tül		U 2		U 2	a i	Ū	110
146.4	12			12	U 12	- 10	12		U 12	U	24	Ü	12	U		U 1:			2 1	j	106
156.4	1	Ü		1	U 1	Ü	1	[U] 1	U 1	Ū	2	tut	1	U		U 1		U 1		ال	110
165.7	1	U	1 1	1	U 1	Ü	1	111 1	U 1	U	2	U	1	U	1	U 1		U 1		U U U	101
176.4	1	Ū	1	1	U 1	u	1		Ul 1	U	2	U	1	U	1	U 1		U 1		J	96
188.9	10		10) 10	U 10	U	10	U 10	U 10	U	20	U	10	U		U 1	0	U 1	9		104
212.6	1		1 1	1 1	U 1	U	1	υ 1	U 1	U	2	U	111	U	1	U 1		U 1	1 1	U	115
221.4	1	U	1 1	1	U 1	Ü	1	U 1	U 1	U	2	U	1	U	1	U 1		U 1	3		107
231.4	6	U	6 1	J 6	U 6	U	6	U 6	U 6	U	12	U	6	U	6	U 6		U	В		98
238.6	1	U	1		U 1	Ü	1	U 1	U 1	U	2	U	1	U		U 1		U 1		Ü	97
248.4	1	U	1 1	1	U 1	U	1	U 1	U 1	U	2	U	1	U	1	U 1		U 1		U	94
256.4	1	U	1 1	1 (U 1	U	1	U 1	U 1	U	2	U	1	U	1	U 1		U	1	u u	102
266,4	1	U	1 1	1	U 1	U	1	U 1	U 1	U	2	U	1	U		U 1		U 1	1	ü	108
276.4	1	U	1 1		U 1	U	1	U 1	U 1	U	2	U	1	U		U 1		Ų ·	1	U	96
286.4	3	U	3	J 3	U 3	U	3		U 3	U	6	U	3	U	3	U 3	3	U :	3	U	99
295.5	3	U		J 3	U 3	U	3		U 3	U	6	U	3	U		Ü] 3		U] 1	10		100
306.0	1	U	1 1	J 1	U 1	U	1	U 1	U 1	U	2	U	11	U	1	U 1		U :	2		101
313.3	1			J 1	U 1	U	1		U 1	U	2	U	1	Ü	1	U		U	1		107
331.1	11	U	1 [3	J/ 1	U 1	U	1		U 1	[0]	2	U	1	U	1	U 1	l i	U] :	2		102
340.1	3	U	3	3	U 3	U	3	U 3	U 3	U	6	U	3	U		U 3			20	U	112
366,7	4	U	4	J 4	U 4	U	4		U 4	U	- 8	U	4	U		U 4		U	4	J	108
391.6	1	U	1		U 1	U	1		U 1	U	2	U	1	U		U 1		U ·	1	U	115
401,1	1	U		J 1	U 1	U	1		U 1	U	2	U	1	U		U 1		U .		U	79
410.2	1 1	U		J 1	U 1	U	1		U 1	U	2	U	1	U	1	U 1		U :			106
426.8	11	U		J 1	U 1	U	1		U 1	U	2	U	11	U		U 1		U .		U	107
480,9	1	U	1 1	J 1	U 1	[U]	1		U 1	U	2	U	11	U		U ·		U :		1	96
487.4	1	U	1	J 1	U 1	u	1		U 1	U	2	U	1	U		U :		U		U	110
497,0	1 1	U	1		U 1	U	1	U 1	U 1	U	22	U	1	U		U ·		U	1	U	110
504.8	1 1	U	1	U 1	U 1	U	1	U 1	U 1	U	2	U	1	U	1	U .	1	U	1	U	96

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery U = Undetected below the specified reporting limit.

J = Estimated value.
NO = Value below detection limit.
NS = Not Sampled

Client: GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEI#: 11/04-11/18/2003 Date Sampled: 11/04-11/18/2003 Date Analyzed: 11/18/2003 Report Date:

HOLE ID =P54	1								***************************************			I							Г		
	1				VOC DA	ATA	., ug/L							ı	NORGANIC DATA, mg	rL.				COELUTING O	OMPOUNDS
Depth	Vinyl Chloride											j							1	1-DCE / Freon	
		Q	t-Dichloroethene C	2	c-Dichloraethene	Q	Trichloroethene	Q	Tetrachloroethene Q	%	SS	Fe ⁺²		Fe, Total	Ammonia	Chlor	de	Chlorine, Total		113	1,2-DCA / Bergene
74.2	1	UJ	1 [1	U	7		4	7	7	0,17		0.27	0,11		2	ND		10	10
87,6	1	UJ	1 1	J	8	1	56		25	1	11	0,35	T	0,43	0,42		3	0.05		10	1U
97.6	8	U	8 (J	200		240	LT	130	1	09	0,33	T	0.38	0.11		8	ND	Ĺ	8U	8U
107.6	20	U	20 l		1000		350		250	1	11	0.24		0.37	0.3		11	ND		20U	20U
117.6	4	П	3 (J	24		64		110		04	0.27		0.39	1.2		9	0.03		3U	3U
127.6	7		4 (U	11		66		250	1	03	0.17		0.21	0,8		4	ND		4U	4U
137.6	4			U	3	U	27		100	1	10	0,16	1.	0.28	0.7		31	ND		3U	3U
147.7	6	U	6 (U	31	T	120		460	1	19	1.01		1.04	1.2		37	ND		6U	6U
155,8	3	U		U	5		43		150		12	0,31		0.43	2,2	9	94	ND ND		3U	3U
165.9	12	U		U	52		190		1000	1	05	0.45		0,53	0,59		39	ND ND		12U	12U
177.6	6	U	6 (U	6	U	63		240	9	99	0.31	\neg	0.43	0.69		6	ND		6U	6U
187,6	1	U	1 1	Ū.	3	П	13	П	13	5	33	0.20		0.30	1,3	1	78	ND		1U	1U
226.6	1	U	1 (U	1	U	5		20	1	09	0.07		0.37	8,8	2	40	0,04		10	10
236.6	1	U	1	u		U	5	П	21	9	91	0.18		0.90	4,0		55	0.04		10	1U
246,6	1	U		uΤ	1	U	2		12		90	0.29	\neg	0.58	1.3	2	64	0.03		1U	10
256.6	1	u	1 (Ü	3		11		32		04	0,33		0.37	4.8		86	ND		1υ	10
268.0	3	U	3 (U.	89		91		109	1 1	03	0.34		2.59	10.4	1	54	ND		3U	30
276.4	2	U	2	u	29	П	48		70	9	37	0,21		0.25	12.2	1	94	0.04		Detect	20
285.4	1	U	1 1	u	9		32		46	1	06	0,09		0,12	8,2	1	22	ND		1U	10
296.3	4	U	4	U	24	П	83		190		39	0.13		0,16	1.4	1	85	0,02		4U	4U
303,6	3	U	3 (u [4		71		111	1 9	98	0.43		0.46	1.6	2	29	ND		3U	3U
326.3	3	U	3 (U	3	U	53	П	110	1	03	0.11		0.14	3,25	4	56	ND	. [3U	3U
334,4	3	U	3	u	3	U	54		100	1	11	0.27		0.28	2,3	4	03	ND		3U	3U
343.0	6	U	6	U	6	U	390		260	1	03	0,24		0.25	0.07	1 2	54	ND		6U	6U
351.3	3	U	3	U	3	U	49		170	1	03	0.09		0.10	0,19	3	95	0.05		3U	3U
360.8	3	U	3	ũ	3	U	39		130	1	08	0,08		0.16	0.22	3	35	0.05		3U	3U
400,1	1	U	1 1	U	1	υ	1	U	1 (1 9	98	ND		0,08	0.05		30	0.04		10	10
411,1	1	U	1 1	U		U	1	U	5	1	06	ND		ND	0.02		52	0,02		1U	1U
421.0	1	U	1	u	1	U	1	U	5		86	0.04		0.08	0,06		52	0.03		10	10
431.0	1	U		U		U	1	U	3		BO	0.12		0.24	0.24		58	0.09		10	10
437.1	1 1	U	1	υl	1	U	1	U	3		80	0.25		0.41	0.56		32	0.20		10	10

												_												
													VOC DATA, ug/L											
Depth	Freon 123A	Q	Freon 123	Q	1.1-Dichloroethane	a s	1,1,1-Trichloroethane	٥	Toluene	Q	Chlorobenzene	٥	Ethylbenzene	٥	m.p-Xylene	0	o-Xylene	0 1	3-Dichlorobenzene (Q 1.4-Dichlorobenzene	0 1	.2-Dichlorobenzene	0	%SS
74,2	1	UJ	1	UJI	1	Tul	1	U	1	TUI	1	ŪΤ	1	ŪΙ	2	TÜT	1	U	1	1	U	1	Ü	77
87.6	1	UJ	1	Ü	1	U	1	u	1	Tul	1	U	1	U	2	U	1	U	1	U 1	U	1	U	111
97,6	8	U	8	U	8	U	8	u	8	U	8	U	8	u	16	Tul	8	u	8	u 8	U	240	1	109
107.6	20	U	20	U	20	U	20	U	20	U	20	ΰĺ	20	U	40	U	20	U	20	U 20	U	2700	1	111
117.6	3	U	3	U	5	T	3	U	3	U	3	U	3	Ų	6	U	3	U	3	ul 3	U	37	1	104
127.6	4	u	4	U	7	П	4	U	4	U	4	U	4	U	8	Tul	4	U	4	U 4	lul	4	-	103
137.6	3	U	3	U	6	17	3	U	3	U	3	ΰÌ	3	U	- 6	TU	3	ul	3	U 3	U	3		110
147.7	6	U	6	U	6	U	6	U	6	U	6	U	6	U	12	U	6	U	6	U 6	U	22		119
155.8	3	U	3	U	3	T	3	U	3	U	3	U	3	U	6	U	3	U	3	Ul 3	U	5		112
165.9	12	U	12	U	12	U	12	u	12	U	12	U	12	U	24	U	12	U	12	U 12	U	20		105
177.6	6	U	6	U	6	U	6	U	6	U	6	U	6	U	12	U	6	U	6	U 6	U	6	U	99
187.6	1	U	1	U	1	TT	1	U	1	U	1	U	1	U	2	Ū	1	U	1	U 1	U	5		93
226,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U 1	U	1	U	109
236,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U 1	U	1	Ü	91
246.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U 1	U	1	U	90
256,6	1	U		U	1	U	1	Ü	1	U		U	1	U	2	U	1	U	1	U 1	U	2		104
268.0	3	U	3	U	3	U	3	U	3	U	3	U	3	U	6	U	3	V	3	U 3	U	7		103
276.4	2	U	2	U	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U 2	U	5		97
285.4	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U 1	U	5		106
296.3	4	U	4	U	4	U	4	U	4	U	4	U	4	U	8	Tul	4	U	4	U 4	U	37		99
303.6	3	U	3	u	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	U 3	U	11		98
326,3	3	U	3	U		U	3	U	3	U		U	3	U	6	U	3	U	3	U 3	U	10		103
334,4	3	U	3	U	3	U	3	U	3	U		U	3	U	6	U	3	U	3	υ 3	U	8		111
343.0	6	U	6	บ	6	Ü	- 6	U	6	U		U	6	U	12	U	6	U	6	U 6	U	6	U	103
351.3	3	U	3	Ū	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	U 3	U	3	U	103
360,8	3	Ų	3	U	3	U	3	U	3	U	3	U	3	U	6	U	3	U	3	บ 3	U	3	Ü	108
400,1	1	U	1	U	1	U	1	U	1	U	1	υ	1	U	2	U	1	U	1	U 1	U	1	U	98
411,1	1	U	1	U	1	U	1	U	1	U		U	1	U	2	U	1	U	1	U 1	U	1	U	106
421.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U 1	U	1	Ü	86
431.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U 1	U	1	U	80
437.1	1 1	U	1	U	1	U	1	u	1	U	1	U	1	U	2	U	1	Tu	1	U 1	U	1	U	80

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb
%SS = Surrogate Recovery
U = Undetected below the specified reporting limit.
J = Estimated value.
NO = Value below detection limit.
NS = Not Sampled

GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEI #: 03-1402

1/11/04 - 2/06/04 Date Sampled: Date Analyzed: 1/11/04 - 2/06/04 2/6/2004 Report Date:

HOLE ID =P55													
			VOC DA	ATA, ug/L					INORGANIC DATA, mg/L	L		COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride	Q t-Dichloroethene G	c-Dichlorgethene	O Trichlorgethene	Q Tetrachloroethene	Q % SS	Fe ⁺²	Fe. Total	Ammonia	Chloride	Chlorine, Total	1.1-DCE / Freon 113	1.2-DCA / Benzene
74.6	1 1	U 1 L		UI 1		U 93	0.04	0,23	0.09	40	0.03	1U I	10
84 1		ŭ i li	i	111 1	1 1	U 90	ND ND	0.06	0.05	14	0.02	10	1U
94.6		ŭl i li	1 1	il i	tiil i -	U 96	ND ND	0.04	0.06	13	0.02	1U	1U
104.6		ŭ i lu	il i	UI 1	tul i	U 95	ND ND	0.12	0.08	11	0.03	1U	1U
114.6	1 1	U 1 L	1 1	U 1	101 1	U 99	0.04	0.22	0.14	9	0.05	10	1U
124.6	1 1	U 1 L		ul 2	 	U 95	0.10	0.54	0,25	14	0.06	10	1U
134,6	1 1	U 1 L	1 1	Ū 1	U 1	U 87	0.12	0.26	0,27	10	0.05	1U	1U
144.6	1 1	U 1 L	1 1	U 1	U 1	U 95	ND	0.07	0.06	10	0,04	1U	1U
154,6	2	1 1	18	8	1	U 88	0,11	0.24	0.17	14	0,03	10	1U
164.6	610	12	1200	98	12	U 114	0,19	0.75	1,6	54	0,06	Detect	Detect
174.6	580	12	140	54	22	109	0,14	0.23	3,6	66	ND	Detect	Detect
186.2	450	12	570	250	42	108	0.23	0,75	2,4	75	0.07	Detect	Detect
244.4	8	U 8 L	120	470	320	111	0.11	1.02	6.9	44	0.06	8U	8U
254.4	20	U 20 L	310	560	4600	111	0,16	0.72	7	46	0.04	20U	20U
264.4	13	12	53	580	1400	107	0.12	0.20	6.6	82	0.02	Detect	120
271.0		U 12 L	37	660	1300	107	0.15	0.34	5,4	80	ND	Detect	120
294.3		U 12 L	14	1000	510	107	0.22	0,36	1.2	38	0.09	12U	12U
304.5		U 8 L	8	U 740	250	114	0.04	0,06	ND	72	0.04	8U	8U
312,0		U 4 L	4	U 240	120	114	ND	0.05	ND	49	0.06	Detect	4U
334,6		U 12 L	1 12	U 1300	650	117	0.24	0.30	0.07	96	ND	12U	12U
340.4		U 6 L	6	U 390	180	109	0.03	0.09	0.02	80	0.03	9U	9U
364.4	1	U 1 L	J 1	U 1	1	U 103	NS	NS	NS	NS	NS	10	10
374.4	1	U 1 L	1	U 69	43	102	0.06	2.37	0,21	71	0,03	10	1U
381.6		U 1 (1	U 1	U 1	U 93	NS	NS	NS	NS	NS	1U	1U
404.4		U 1 L		U 5	1	U 86	0.28	0.55	0.18	37	0.08	10	1U
425.4		U 1 L		U 2	1	87	0,26	0,54	0,10	27	0,04	1U	10
434,4	1	U 1 L	1	U 1	U 1	U 90	ND	0.05	ND	25	ND	10	10
442.3	1	U 1 L	1	U 1	1	U 89	ND	0.03	ND	28	0.02	1U	10
474.4	1	U] 1 L	1 1	U 1	[U] 1	U 86	NS	NS	NS	N/S	NS	1U	10

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										· · · · · · · · · · · · · · · · · · ·				***************************************								
Depth	Freon 123A	Q Freon 123	Ω	1 1-Dichlorgethane	ο.	1.1.1-Trichloroethane	٥	Toluene	Ω	Chlorobenzene	5	VOC ĐATA, ug/L Ethylbenzene	٥	m.p-Xvlene	Q	o-Xylene	0	1.3-Dichlorobenzene (	0.1	4-Dichlorobenzene	٥	1.2-Dichlorobenzene	Q	%SS
74.6			TÜT		TŪĪ	1	ਹੈ		चि	1 1	ΰT		ŪΙ	2	TÜT		ΙŪΙ		ŪT		u I		Ū	93
84.1	1	U 1	Tul		U	1	ul		Ū	1	υŤ	1	U	2	Tul	1	u	1 1	ul	1	u	1	U	90
94.6		U 1	tut	1	tul	1	U	1	Ū	1	U	1	U	2	Tul	1	u	1	υt	1	u	1	U	96
104.6	1	U 1	Tul	1	tut	1	u	1	U	1	üΤ	1	U	2	Tul	1	u	1 1	u l	1	ΰİ	1	U	95
114.6	1	U 1	U	1	U	1	U	1	U	1	ũ	1	U	2	U	1	U	1 1	U	1	U	1	U	99
124.6	1	U 1	U	1	U	1	U	1	Ū	1	υT	1	U	2	U	1	U	1	üΪ	1	U	1	U	95
134.6	1	U 1	U	1	U	1	U	1	U	1	u	1	u	2	U	1	U	1	U	1	ul	1	U	87
144.6	1	U 1	U	1	U	1	U		U	1	U	1	U	2	U	1	u	1	U	1	U	1	U	95
154,6	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	u	1	U	1	U	88
164.6		U 12	U	12	U	12	U	12	U	130	T	12	U	24	U	17	П	12	U	12	U	200		114
174.6		U 12	U	12	U	12	U		U	220	T	12	U	24	U	12	U	12	U	12	U	54		109
186,2	12	U 12	U	12	U	12	U		Ü	140	+	12	U	24	U	12	U	12	U	12	U	95		108
244.4	8	U 8	U	8	U	8	U	8	Ü	8	ÜΪ	8	U	16	U	8	U	8	U	8	U	13		111
254.4	20	U 20	U	20	U	25		20	U	20	U	20	U	40	U	20	u	20	Ū.	20	U	140		111
264.4		U 12	U		U	12	U	12	U	12	U	12	U	24	U	12	U	12	U		U	22		107
271.0		U 12	U	12	U	12	U	12	U	12	Ü	12	U	24	U	12	U	12	U	12	U	28		107
294.3	12	U 12	U	12	U	12	U	12	U	12	U	12	U	24	Ų	12	U	12	U	12	U	25		107
304.5	8	U 8	U	8	U	8	U	8	U	8	U	8	U	16	U	8	U	8	U	8	U	8	U	114
312.0		U 4	U	4	U	4	U	4	U		U	4	U	8	U		U		U	4	U		U	114
334.6	12	U 12	U	12	U	12	U	12	U	12	U	12	U	24	U	12	U	12	U	12	U		U	117
340.4	6	U 6	U		U	6	U	6	U	6	U	6	U	12	U	6	U		U	6	U	6	U	109
364.4	1 1	U 1	U	. 1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	103
374.4	1	0 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	102
381.6	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U		U	93
404.4	1	U 1	U	1	Ü	1	U	1	U		U		U	2	U	1	Ü		U		U	2		86
425.4	1	U 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	Ü	1	Ü	1	U	1		87
434.4		U 1	U	1	U	1	U	1	U		U		U	2	Ü		u	1	U		U		U	90
442.3		U 1	U	1	U	1	U	1	U		U		U	2	U	1	U	11	U		U		U	89
474.4	1	U 1	U	1	V	1	U	1	U	1	U	1	U	2	Įΰ	1	U	1	U .	1	U	1	U	86

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %,SS = Surrogate Recovary

U = Undetected below the specified reporting limit.

J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled



Client: GTEOSI Location: Hicksville, NY Groundwater Profiling Project ID: SEI #: 03-1402 Date Sampled: 1/21-1/29/2004 1/21-1/29/2004 Date Analyzed: 1/29/2004 Report Date:

HOLE ID =P56	T												
HOLL ID -FUG							1						
1			VOC DA	ITA, ug/L			į.	i	NORGANIC DATA, mg/	L			COMPOUNDS
Depth	Vinyl Chloride											1,1-DCE / Freon	
			<u>c-Dichloroethene</u>	Q <u>Trichloroethene</u>	Q Tetrachioroethen	Q % \$S	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
76.6	1	U 1	J 1	U 1	U 180	111	0.20	0.42	0,05	16	0,06	10	10
86.6	1	U 1	J 1	U 1	U 1	U 99	0.07	0.16	0.05	15	ND	1U	1U
96,6	1	U 1	1	U 1	U 1	U 91	0.04	0,11	0.05	14	ND	10	1U
106.6	35	J 1	J 1	U 1	U 1	U 102	0.04	0.15	0.06	90	0.03	1U	10
116.6	22		1	U 1	U 1	U 95	0.04	0,07	0.06	125	0.05	1U	1U
126,6	10		JI 1	Ü 1	U 1	U 91	0.21	0.44	0.27	106	0.14	10	1U
136.6	7	J 1	1 1	U 1	U 1	U 88	ND	0.11	0.07	165	0.04	10	1U
146.6	3		J 1	Ül i	lūl i	U 100	ND ND	0,11	0,05	180	0,06	1U	1U
156.6	1			U i	Ŭ 1	U 94	ND ND	0,19	0.17	70	0.03	10	10
166.6	<del>l i</del> —			ŭ i	lŭ i	U 99	0,07	0,12	0.07	287	0,06	10	10
176,6	<del>                                     </del>			Ü 1	lŭl i	U 94	0.06	0.22	0.10	290	0.05	10	10
186.6	1			ŭl i	ŭ i	U 99	0,09	0.69	0.24	108	0.03	10	10
194.0	<del>                                     </del>	U 1	,	U 1	U 1	U 104	0.16	0,58	0,42	244	0.07	10	10
211.5	<del>                                     </del>	U 1		U 1	U 1	U 101	ND ND	0.16	0.42	179	0.07	10	10
221.5	1			U 1	U 1	U 103	ND ND	0.16	0,05	212	0,05	10	10
231.5									0.02		0.05	10	10
231.5	1 1			U 1 U 1		U 99 U 113	0.04	0.61 0.68	0.18	181 156	0.05	10	10
	<del></del>											1U	10
251.5	1 1			U 1	U 1	U 103	0,03	0.05	0.04	82	0.06		
261.5	1 1			U 1	U 1	U 110	80,0	0.32	0.20	52	0,09	1∪	10
305.9	1			U 1	U 1	U 96	0.04	0.20	0.11	148	0.05	10	10
316.5	1		U 1	U 1	U 1	U 89	ND	0.11	0,03	24	0.05	10	1U
324,2	1		U 1	U 1	U 1	U 94	0.04	0,06	0.08	62	0.05	10	10
346,6	1												
			<u> </u>	U 1	U 1	U 97	0.11	0.78	0.23	32	0.12	1U	10
354.0	1	U 1	U 1	ŭ i	U 1	U 104	0.07	0.17	0.14	33	0.06	10	10
		U 1	U 1	<u> </u>									
354.0	1	U 1	U 1	ŭ i	U 1	U 104	0.07	0.17	0.14	33	0.06	10	10
354.0	1	U 1	U 1	ŭ i	U 1	U 104	0.07 0.03	0.17	0.14	33	0.06	10	10
354.0 388.6	1	U 1 U 1	U 1	U 1 U 1	U 1  U 1	U 104 U 85	0.07 0.03 VOC DATA, ug/L	0.17 0.14	0.14 0.03	33 16	0.06 0.03	1U 1U	1U 1U
354.0 388.6 Depth	1	U 1 1 U 1 1 Q Freon 123	U 1 1	Q 1.1.1-Trichloroethan	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene	0.17 0.14 0. m.p-Xylene	0.14 0.03	33 16	0,06 0.03	1U 1U Q 1,2-Dichlorobenzene	1U 1U 2 %SS
354.0 388.6 Depth 76.6	1 1 1 Freon 123A	Q Freon 123	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-Trichloroethan	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 104 U 85 Q Chlorobenzene	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene	0.17 0.14 Q m.p-Xylene U 2	0.14 0.03 <u>Q o-Xylene</u>  U 1	33 16 2 1,3-Dichlorobenzene	0,06 0.03	1U 1U 2 1,2-Dichlorobenzene	1U 1U 2 %SS
354.0 388.6 <u>Depth</u> 76.6 86.6	1 1 1 Freon 123A 1 1	Q Freon 123 U 1 U 1	U 1 1	Q 1,1,1-Trichloroethan U 1 U 1	U 1 U 1 ■ <u>Q Toluene</u> U 1 U 1	U 104 U 85 Q Chlorobenzene U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene U 1 U 1	0.17 0.14 0.14 0.12 0.12 0.12	0.14 0.03 Q <u>o-Xylene</u> U 1	33 16 Q 1.3-Dichlorobenzene	0.06 0.03 0.03	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1	1U 1U 1U 2 %SS 1111 U 99
354.0 388.6 <u>Depth</u> 76.6 86.6 96.6	1 1 1 Freon 123A 1 1 1 1	Q Freon 123 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1.1-Trichloroethan U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Chlorobenzene U 1 U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene U 1 U 1 U 1	0.17 0.14 Q m.p-Xylene U 2 U 2 U 2	0.14 0.03 Q o-Xylene U 1 U 1 U 1	33 16 2 1.3-Dichlorobenzene U 1 U 1	0.06 0.03 0.03 0.03	1U 1U 1 U 1 U 1 U 1	1U 1U 1U 1U 111 U 99 U 91
354.0 388.6 Depth 76.6 86.6 96.6 106.6	1 1 1 Freon 123A 1 1 1	Q Freon 123	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1.1-Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Chlorobenzene U 1 U 1 U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene U 1 U 1 U 1 U 1	0.17 0.14 2 m.p.Xylene U 2 U 2 U 2 U 2	0.14 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	33 16 Q 1.3-Dichlorobenzens U 1 U 1 U 1	0.06 0.03	1U 1U 1 U 1 U 1 U 1	1U 1U 1U 1U 1U 1111 U 99 U 91 U 102
354.0 388.6 Depth 76.6 86.6 96.6 106.6 116.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1.1-Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Q Chlorobenzene U 1 U 1 U 1 U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene U 1 U 1 U 1 U 1 U 1	0.17 0.14 Q m.p-Xylene U 2 U 2 U 2 U 2 U 2	0.14 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03	1U 1U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1U 1U 1U 1U 111 U 99 U 91 U 102 U 95
354.0 388.6 Depth 76.6 96.6 106.6 116.6 126.6	Freon 123A  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1-Dichloroethane U	Q 1.1.1-Tijchloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1	U 104 U 85 Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14 Q m.p-Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03 Q o-Xylene U 1 U 1 U 1 U 1 U 1 U 1 U 1	33 16 Q 1.3-Dichlorobenzene U 1 U 1 U 1 U 1 U 1	0.06 0.03	1U 1U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1U 1U 1U 1U 2
354.0 388.6 Depth 76.6 86.6 96.6 106.6 118.6 126.6	Freon 123A  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1.1-Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14 Q m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03 0.03  Q o-Xylene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	1U 1U 1U 1U 1U 1 1 U 1 U 1 U 1 U 1 U 1	1U 1U 1U 1U 1U 1U 111 U 99 U 91 U 102 U 95 U 91 U 98 8
354.0 388.6 Depth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.6	Freon 123A  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-Tijchioroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03 VOC DATA, ug/L Q Ethylbergene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14 Q m.p-XMene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	Q o-Xylene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	2 1.3-Dichlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1	1U 1U 1U 1U 99 1111 1U 99 1U 102 1U 95 1U 95 1U 91 1U 98 1U 91 1U 98
354.0 383.6 Depth 76.6 88.6 96.6 106.6 116.6 126.6 145.6 145.6	Freon 123A  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1,1-Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 104 U 85 Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03  VOC DATA, ug/L Q Ethylbergene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14 Q m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1U 1U 1U 1U 1 1U 1 1U 1 1 1 1 1 1 1 1 1	1U 1U 1U 1U 1U 1U 1U 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1111 1U 1U
354.0 388.6 2001 76.6 96.6 96.6 106.6 116.6 136.6 146.6 156.6	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03	0.17 0.14  Q m.p-XMene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	Q o-Xylene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.3-Dichlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1	1U 1U 1U 1U 99 1U 99 1U 91 U 91 U 91 U
354.0 388.6 Depth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.6 156.6 166.6	Fron 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-TijcNjoroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85 Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03  VOC DATA, ug/L  Q Etity/bergene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14  2 m.p.Xvlens U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1U 1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1
354.0 388.6 2007.0 76.6 86.6 96.6 116.6 126.6 136.6 146.6 156.6 176.6 176.6 176.6	Freen 123A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1-Exhloroethane U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1	Q 1.1Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03 VOC DATA ug/L Elitylbergene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14  0.14  0.17 0.14  0.17 0.14  0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.1	G o-Xylene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	33 16 16 19 11 10 11 11 11 11 11 11 11 11 11 11 11	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1U   1U   1U   1U   1U   1U   1U   1U	1U 1U 1U 1U 1U 1U 1U 99 1U 91 100 99 1U 94 99 1U 99 99 1U 99 99 99 1U 99 99 99 99 99 99 99 99 99 99 99 99 99
354.0 368.6 Denth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.0 156.6 166.6 176.6 186.6 186.6	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-TicNoroethan U	U	U 104 U 85  CNorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03  VOC DATA, ug/L Q Etity/berzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14  Q m.p.Xvlene U	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U 1	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1
354.0 388.6 Denth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 156.6 166.6 176.6 186.6 194.0 211.5	Freen 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1-Exhloroethane U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1	Q 1.1Trichloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03  VOC DATA, ug/L Q Ethylbenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14  Q m.p-XVene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	Q o-Xylene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	G 13-Dichlorobenzens U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1U   1U   1U   1U   1U   1U   1U   1U	1U 1U 1U 1U 1U 1U 1U 1U 99 1U 91 100 100 100 100 100 100 100 100 100
354.0 388.6 Desth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.6 156.6 166.6 176.6 186.6 176.6 184.0 211.5 221.5	Freen 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	Q 1.1Tickloroethan U	U	Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07 0.03  VOC DATA, ug/L  Striv/berzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14  2 mp-Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U 1	1U 1U 1U 1U 1U 1U 101 1U 1U 103
354.0 388.6 Depth 76.6 85.6 96.6 106.6 116.6 126.6 146.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.5 157.6 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5 156.5	Freen 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-Tijchloroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U   104   104   85	0.07 0.03  VOC DATA, ug/L Q Ethylbergene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.17 0.14  2 m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.3  0.3  0.5  0.5  0.5  0.5  0.5	33 16 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U 1	1U 1U 1U 1U 1U 1U 1U 1U 99 1U 99 1U 91 1U 95 1U 95 1U 96 1U 99 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 90 1U 90 90 90 90 90 90 90 90 90 90 90 90 90
354.0 388.6 Denth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 144.6 156.6 166.8 176.6 166.8 176.6 186.0 121.5 221.5 231.5 241.5	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	Q 1.1Tirchloroethan U	U	Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03	0.17 0.14  Q m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 16 0 13-Dichlorobenzens 0 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.06 0.03  2 1.4-Dichlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1U   1U   1U   1U   1U   1U   1U   1U	1U 1U 1U 1U 1U 1U 101 1U 103 U 99 U 113
354.0 388.6  Depth 76.6 88.6 96.6 106.6 116.6 126.6 136.6 146.6 146.6 156.6 146.6 156.6 156.6 156.6 126.6 127.6 136.6 128.1 221.5 221.5 221.5 241.5 241.5	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q 1.1.Tickloroethan U	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03     0.07     0.03     0.07     0.03     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05       0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05   0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05   0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05	0.17 0.14  2 m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 16  U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	Q 1.4-Dichlorobenzene U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U 1 1 1U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1U 1U 1U 1U 1U 103 U 99 U 113 U 103 U 99 U 113 U 99 U 104 U 105 U 99 U 94 U 106 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 107 U 10
354.0 388.6  Denth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 15	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	Q 1.1Tirchloroethan U	G Ioluene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q Chlorobengene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03	0.17 0.14  Q m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	G 13-Dichlorobenzens U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	1U   1U   1U   1U   1U   1U   1U   1U	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1
354.0 388.6  Denth 76.6 66.6 66.6 106.6 116.6 126.6 126.6 136.6 146.6 156.6 156.6 156.6 156.6 1276 121.5 221.5 231.5 241.5 251.5 261.5 305.9	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1	Q 1.1.Tichlorethan U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 104 U 85  C Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03     0.07     0.03     0.07     0.03     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05       0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05   0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05   0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05	0.17 0.14  2 m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 2 13-Dichlorobenzens U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.06 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U 1	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1
354.0 388.6  Depth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.1 221.5 221.5 231.5 241.5 251.5 305.9 316.5	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 1.23 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	Q 1.1Tirchloroethan U	G Ioluene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Q Chlorobengene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03	0.17 0.14  Q m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	G 13-Dichlorobenzens U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	1U   1U   1U   1U   1U   1U   1U   1U	1U 1U 1U 1U 1U 1U 1U 1U 1U 10 10 199 10 102 10 102 10 103 10 104 105 104 107 107 108 109 109 109 109 109 109 109 109 109 109
354.0 368.6  Denth 76.6 66.6 66.6 106.6 116.6 126.6 136.6 146.6 146.6 146.6 146.6 146.6 146.6 146.6 127.6 146.0 121.5 221.5 231.5 241.5 241.5 251.5 305.9 316.5 324.2	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1	Q 1.1.Tichlorethan U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1 U   1	U	U 104 U 85  C Chlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.07   0.03	0.17 0.14  2 m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.3ylene  U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	33 16 16 19 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11	Q 1.4-Dichlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U 1	1U 1U 1U 1U 1U 1U 99 1U 94 1U 101 1U 101 1U 101 1U 103 U 110 U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 104 U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 99 99 99 99 99 99 99 99 99 99 99
354.0 388.6  Depth 76.6 86.6 96.6 106.6 116.6 126.6 136.6 146.6 156.6 156.6 146.6 156.6 127.6 156.6 127.6 146.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 156.7 15	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 1.23 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	Q 1.1TicNoroethan U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U	U   104   104   104   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105	0.07   0.03	0.17 0.14  Q m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0	33 16 16  Q 1 3-Dichlorobenzens U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.06 0.03  2 1.4-Dehlorobenzene U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1U   1U   1U   1U   1U   1U   1U   1U	1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 10 191 199 1U 91 102 1U 95 1U 96 1U 96 1U 96 1U 96 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U 90 1U
354.0 368.6  Denth 76.6 66.6 66.6 106.6 116.6 126.6 136.6 146.6 146.6 146.6 146.6 146.6 146.6 146.6 127.6 146.0 121.5 221.5 231.5 241.5 241.5 251.5 305.9 316.5 324.2	Freon 123A  1  1  1  1  1  1  1  1  1  1  1  1  1	Q Freon 123 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q 1.1.1-Ticklorethan U	U	U   104   104   85	0.07   0.03	0.17 0.14  2 m.p.Xvlene U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	0.14 0.03  0.3ylene  U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	33 16 33 16 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.06 0.03  2 14-Dichlorobenzene U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1U 1U 1U 1U 1U 1U 1U 1U 1 1U 1 1U 1 1U	1U 1U 1U 1U 1U 1U 99 1U 94 1U 101 1U 101 1U 101 1U 103 U 110 U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 104 U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 1U 99 99 99 99 99 99 99 99 99 99 99 99 99

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled



11/12/2003

Mobile Laboratory Results Sheet

GTEOSI Location: Hicksville, NY Project ID: Groundwater Profiling SEI#: 03-1402 11/04-11/12/2003 Date Sampled: 11/04-11/12/2003 Date Analyzed:

Report Date:

HOLE ID =P58																	
				VOC DA	TA, ug/	L						H	NORGANIC DATA, mg/L			COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride														1	1.1-DCE / Freon	1
			Q c-Dichlo	roethene (	2 Tric	chloroethene	Q To	etrachloroetnene	Q	<u>% SS</u>	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79.7			U	1   1	7	1	U	1	U	84	ND	ND	ND	23	0,06	10	10
89,7	1 1	UJ 1	U	1 ]	1	1	U	1	U	84	0.09	0.22	0,2	21	0.03	1U	10
99.7	1		U	1 1	1	1	U	1	U	84	0,22	0,38	0,4	33	0,12	10	10
109.7	1	U 1	U	1	J	1	U	1	U	96	0,33	0.67	0.46	28	0.21	10	1U
119,7	1 1	U 1	U	1   [	1	1	U	2		92	0.06	0.13	0.14	ND	0.04	1U	1U
129.7	1	U 1	U	1 (	1	11	U	1	U	95	0.26	0.67	0.53	ND	0.12	10	10
139.7	1	U 1	U	1   (	기	1	U	1	U	109	0.11	0.21	0.21	102	0.06	10	10
149.7	1		U	1	J	1	U	1	U	109	0.09	0.31	0.26	13	0.05	10	1U
159,7	1	U 1	U	1	J]	1	U	1	U	108	0.19	0.31	0.29	76	0.07	10	10
169.7	1	U 1	U	1	J.	1	U	1	U	94	0,19	0.20	0.05	93	0,1	10	10
179,7	1	U 1	U	1	J	1	U	1	U	107	0.23	0.49	0.41	67	0.09	1U	1U
189.7	1	U 1	U	1	J	1	U	1	U	90	0.05	0.10	0.07	76	0.03	10	10
196.0	1 1	U 1	U	1 1	3	1	U	1	U	91	0.21	0,44	0.56	98	0.16	10	10
213.2	1	U 1	U	1	J t	1	U	3		91	ND	0.31	0.09	62	ND	10	10
274.7	1		U	1	١	1		50		101	ND	0.04	0.05	638	0.02	1U	10
284.7	1		U	1	J	1	U	43		100	0.04	0.14	0.14	591	0.03	10	10
294.7	1	U 1	U	1	J	1		46	П	101	0,12	0.16	0.22	315	0.03	1U	10
304.7	1	U 1	U .	2		2		49		106	0.27	0.33	0.40	81	0,06	1U	10
314.7		U 3	U	3	J	3	U	120		110	0.06	0.07	0.03	111	0.02	3U	3Ú
323,2	1	U 1	U	1 1	1	1	U	1		102	0.03	0.05	0,07	51	ND	10	10
342.3	1	U 1	U	1 1	1	1	U	1	U	90	0,05	0.22	0.08	88	0.03	1U	10
402.4	1	U 1	U	1 1	J	1		15		98	0.30	0.42	0.07	552	0.17	10	1U
432.1	1	U 1	U	1	ال	2		15		99	0.05	0.15	0,10	900	0.04	1U	1U
471.4	1	U 1	U	1	از	13		19		94	0.04	0.11	0.06	953	0.04	1U	1U

	T																								
													VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon 123	Q :	1,1-Dichloro	ethane Q	1, 1, 1-Tri	chloroethane (	2 Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Ω	m.p-Xylene	Q	o-Xylene	Q.	1,3-Dichlorobenzene	Q 1.4	4-Dichlorobenzene	Q 1.	2-Dichloroben:	zene Q	%SS
79.7	1	UJ	1	UJ	1	U		1 (	J 1	TÜ	1	U	1	TUI	2	[U]	1	U	1	U		U	1	U	84
89.7	1	UJ	1	UJ	1	U		1 (	ا (	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	84
99.7	1 1	UJ	1	UJ	1	U		1 1	J 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	84
109.7	1	U	1	U	1	U		1 (	J 1	Ìυ	1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
119.7	1	U	1	U	1	U		1 (	J 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	92
129,7	1	U	1	U	1	U		1 (	J 1	U		Ü	1	U	2	U	1	U	1	U	1	U	1	U	95
139.7	1	U	1	U	1	U		1 1	J 1	U	1	U	1	U	. 2	U	1	U	1	U	1	U	1	U	109
149.7	1	U	1	U	1	U		1 1	J 1	U	1	U	1	U	2	U	1	Ū	1	U	1	U	1	U	109
159.7	1	U	1	U	1	U		1 1	ا 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
169.7	11	U	1	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	94
179,7	1	U	1	U	. 1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	107
189.7	1 1	U	1	U	1	U		1 1	U 1	U		U	1	U	2	U	1	U	1	U	1	U	11	U	90
196,0	1	U	11	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	11	U	1	U	1	U	91
213,2	11	U	1	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	11	U	1	U	1	U	91
274.7	1	U	1	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	11	U	1	U	1	U	101
284.7	1	U	1	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	100
294.7	1	U	1	U	1	U		1 1	U 1	Ü	1	U	1	U	2	U	1	U	1	U	1	U	1	U	101
304.7	1 1	U	1	U	. 1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	106
314,7	3	U	3	U	3	U		3	U 3	U	3	U	3	U	6	U	3	U	3	U	3	U	3	U	110
323.2	1	U	1	U	1	U		1	U 1	U		U	1	U	2	U	1	U	1	U	1	U	1	U	102
342.3	1	U	1	U	1	U		1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	90
402.4	1	U	1	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
432.1	1	U	1	U	. 1	U		1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	99
471.4	1	U	1	U	1	U		1 1	U 1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	94

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

L = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled



Citent; Location: Project ID: SEI #: Date Sampled; Date Analyzed; Report Date: GTEOSI Hicksville, NY Groundwater Profiling 671857-R 82/02/2007-02/21/2007 92/02/2007-02/21/2007 1/8/2007

HOLE ID ≈ P-102												
						VOC DATA	L ugit.					
1	Viryl Chlor	109	E-Dichforset	tiene	s-Ordferow	thene	Trunktroythene		Letrachtoroethens			%.88
Deem	Value	Q 0#	Val	ue Q DF	Value	Q DF	Value	Q DF	Value	a	DF	
75.5	1	U 1	1	U 1	1	U 3	1	U[ 1 ]	1	U	1	121
85,5	. 1	U 1	1	UII	1	0 1	1	U 1	1	U	1	124
95,5	1	U 1	1	U 1	1	U 1	1	U 1	1	U	1	93
105,5	1	U 1	1	U 1	1	U 1	1	U 1	1	Ü	1	113
115,5	1	U 1	1	U 1	1	U 1	1	U 1	1	U	1	114
138.1	7	U 1	1	UII	1	U 1	1	U 1	1		1	93
150.5	1	U 1	1	UII	1	UI	1	Ut	2		1	121
160.4	1	U 1	1	UII	1	U 1	1	U 1	1	u	1	96
170.5	1	U 1	1	UII	1	UII	1	U 1	1		1	100
180,4	1	U 1	1	U 1	1	U 1	2	1	3		1	96
205.2	1	U 1	1	0 1	1	1	2	1	33		1	89
215.2	1	U 1	1	U 1	5	1	7	1	170		10	88
225.2	. 1	U 1	1	U 1	1	U 1	2	1	24		1	87
235.2	1	U 1	1	UII	1	UII	3	1	35		1	82
245.2	1	U 1	1	U 1	1	U 1	6	1	48		1	98
257,7	. 1	UI	1	U 1	2	1	7	1	500		1	94
265.2	1	U 1	1	U 1	13	1	240	J 240	4800		240	93
275.2	1	U 1	1	U 1	9	1	370	J 100	2900		100	90
283,4	1	U 1	1	U 1	4	[1]	81	. 1	1200		24	95
309,4	1	U 1	1	U 1	7	1	14	1	1000		24	114
320,3	1	U 1	1	U 1	1	U 1	1	U 1	71		1	107
329,3	1	U 1	1	U 1	1	Ü 1	1	U 1	80		1	111
340.3	1	U 1	1	U 1	1	UII	1	U 1	70		1	108
361.8	1	U 1	1	U 1	1	UI	1	U 1	98		24	108
370.6	1	U 1	1	U 1	1	U 1	1	U 1	19		1	113
381.0	1	U 1	1	U 1	1	UI	1	U 1	21_		1	105
389.9	1	UIt	1	U 1	1	U 1	3	1	83		10	114
422,1	1	U 1	1	U 1	1	U 1	1	U 1	1		1	109
431.9	1	U 1	1	UI	1	U 1	1	U 1	1	U	1	112
449.5	1	U 1	1	U 1	1	U 1	1	U 1	1	Ü	1	109
459,8	1	U 1	1	U 1	1	U 1	1	U 1	1	U	1	109
474.3	1	U 1	1	U 1	1	U 1	1	U I	1	U	1	103

		INORGANIC DATA, mgil.		
Fe'-	Fe. Total	Ammonia	Gittanide	Chionne, You
0.37	0.69	0.22	82	0.28
0.28	0.56	0.22	35	0.05
0.40	0.80	0.34	67	0.40
0.24	0.39	0.03	16	ND
0,11	0.24	0.03	20	ND
0,52	0,68	2.5	29	ND
0.45	0,50	2.5	19	NO
0.34	1,02	1.6	48	0.12
0,70	2.70	5,9	26	0.92
0.63	0.81	7.2	66	ND
0,23	0,37	2.8	31	ND
0.32	0.36	4.5	51	ND
0.22	0.39	8,8	20	ND
0.36	0.52	4.0	34	0.02
0,47	0,49	6.2	29	ND
0,31	0.44	9.4	35	NO
0.38	0.64	8.00	19	0.16
0.35	0.71	0,70	13	0.13
NA NA	NA NA	NA NA	NA NA	NA NA
0,06	0.23	0,17	32	0.0
0.06	0.20	0.30	72	ND
0.04	0.18	0.04	107	0,0
0,04	0.27	0.08	100	0,0
0,06	0,21	0,07	68	0.0
0,03	0.20	0.08	42	0.0
0.02	0.13	0.04	29	0.0
0.02	0.12	0.04	12	NE.
0.22	0.80	0.20	47	0.1
0.10	0.37	0.10	4	0.0
0,02	0.18	0,06	3	NE
0,07	0,23	0,29	28	0.0
ND	0.10	0.04	27	NF.

Freon 113		Freons, up Eteon 123	M.	Ereon 123A	
		Value		Value	9.0
Value	Q BF		Q DF		
1	U 1	1	UI	11	u
1	Ü 1	1	U i	1	U
1	U 1	1	U 1	1	u
1	U 1	1	U	. 1	U
1	U 1	1	U 1	!	U
1	U 1	1	UI	1	U
1	U 1	1	UI	1	U
11	UII	1	U	1	U
1	U 1	1	U	1	
1	Ü	1	U 1	1	U
11	UI	1	U 1	1	U
1	U 1	1	U i	1	U
11	U 1	1	U	1	U
1	U	1	U 1		U
1	Ull	1	UII	1	U
1	U	1	U 1	111	U
3	1	11	U 1	1	U
4	1	1	UI	1	U
1	U	1	U 1	1	U
1	U 1	1	UI	1	U
1	U١	1	U 1	1	U
1,	U 1	1	U 1	1	U
1	U 1	1	U 1	1	U
1	Ull	1	U 1	1	U
1	U 1	111	U(1	1	U
1	U 1	1	Uτ	1	U
1	U 1	1	U t	1	U
11	U 1	1	U 1	1	U
1	Ut	1	U 1	1	U
11	UI	1	U 1	1	U
11	Ut	1	U 1	1	u
1	U	1	U\ 1	1	U

														VOC DAT	A 1/20														
1			a a Biratana a					0 T							-, ugrc	014		The decision						LA Frank a barrer	4.4.00	chłotoberszene	1.3-Dichlorobe		%55
Depth	I.1-Dichloroeth Value	Q DF	1.1-Dichloroethane Value Q.DF	1.1 I-Trachioro Value	Q DF	1.1.1.2-Tetraciniosos	Q DF	Castion Tetrach Vielus	Q DF	Benzene Value	Q DF	1,2-Dsta		<u>Tokaene</u> Value	Q DF	Chlorober Value	OUT OUT	Ethylpanzanu Value	n nF	m.p-Xylene Velue	G DF	O-Xylana Value	o ne	1.3-Dichlosphenzene Value Q.DF		ake ODF		Q DF	433
75.5	1	UIT	1 011	Value	UIT	NA.	7 1	1	UIII	- Value	10 1		DI1		Ülil	7 4000	UIT		UII		ÜİI	1	UI 1	1 1/1		1 1/1	1	UII	121
86.5		UII	1 11	1	UII	NA AN		<u> </u>	U 1	<del></del>	U 1	1	1111	<del></del>	UII	i	ul il	1	uli	1	U 1	1	UII	1 11		1 01	1	UI	124
95.5	1	U 1	1 01	1	UII	NA		<del></del>	U 1	<del></del>	U 1	<del>                                     </del>	11 1	<del></del>	1111	1	uli	1	111		ul 1	1	U I	1 11		1 U1	1	UIT	93
105.5	1	U i	1 111	1	UII	NA.	-	<del></del>	U 1		U 1	1	011	1	UI	1	Uli	1	uli	1	ulil	1	U 1	1 01		1 01	1	Uli	113
115,5	1	UIII	1 011	1	UII	NA	1	1	UI 1	1	U 1	1	UI	1	U 1	1	UII	1 1	U 1	1	U 1	1	U 1	1 U 1		1 01	1	U 1	114
138,1	1	UII	1 U 1	1	11	N/A		1	U 1	1	U 1	1	U 1	1	UII	1	UII	1	u 1	1	U 1	1	U 1	1 U 1	1	1 U 1	1	UI	93
150,5	1	U 1	2 1	2	1	NA		1	U 1	†	U 1	1	UI	1	U 1	1	UI	1 1	U 1	1	U 1	1	UI	1 U 1		1 U 1	1	U 1	121
160,4	1	UII	1 U 1	1	U 1	NA		1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1 U 1		1 U 1	1	U 1	96
170.5	1	1	3 1	4	1	NA		1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	L	1 U 1		U 1	100
180.4	1	U 1	1 U 1	1	U 1	NA		1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 1	U 1	1	U 1	1	U 1	1 01		1 U 1		U 1	96
205.2	1	U 1	1 01	1	U 1	NA NA		11	U 1	1	U 1	1	U 1	1	UII	1	UII	1	U 1	1	UII	1	U 1			1 U 1		UI	89
215.2	1	U 1	1 U(1)	1	U 1	NA		1	U 1	1	U 1		U 1	1	U 1	1	U1	1	U 1	11	U 1	1	U 1	1 U 1		1 U 1		1	88
225.2	11	11	1 1	3	1	NA .		11	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1 U 1		1 U 1		U 1	87
235,2	1	U 1	1 U 1	1	U 1	NA		1	Ú 1	1	U 1		U 1	1	U 1	1	U 1	1 1	U 1	1	U[1]	1	U 1	1 U 1		1 01	1	U 1	82
245.2	1	U[1]	1 01	1	0 1	NA NA		1	U 1	1	U 1		U) 1		U 1	1	U 1	11	U 1	1	U 1	1	U 1	1 01		1 U 1	1	U 1	98
257.7	1	UI	1 0 1	1	U 1	NA .		1	U 1	1	U 1	1	U 1		U 1	1	U 1	1	u 1	1	U 1	1	U 1	1 U 1		1 01		U 1	94
265.2	11	UII	1 01	1	U 1	NA NA		- 5	_ 1 1	1	U 1		U 1	1 1	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1			1 U 1	7	- 1	93
275.2	1	U 1	1 U 1	1	비비	NA		5	1	1	U 1		U 1	1	U 1	1	U 1	11	UI	1	UII	1	U 1	1 U 1		1 01	1	0 1	90
283.4	11	U 1	1 0 1	1	0[1]	NA NA		1	U 1	1	U 1		U 1		U 1	1	U 1	1	UII		U 1	1	UII	1 0 1		1 01	3	11/2	95
309,4	11	U 1	1 U 1	1	U 1	1	11	1	1	1	U 1		U 1		U 1	1	U 1	1	<u> </u>		U 1		U 1	1 01		1 01			114
320,3	1	UII	1 0 1	- 1	U 1	1	U 1	11	U 1	1	U 1		U 1	1	UII	1	UI		ulil		UII		0 1	1 01				U 1)	107
329,3	1	UII	1 011		U 1		U 1		U 1		U 1				UII	!_	U 1		U 1		UII		U 1	1 U 1		1 01		- 1111	111
340.3	1	U 1	1 U 1	1	U 1		U 1		U 1		U 1		U 1		U 1		U 1		U 1		U 1		U 1	1 01		1 011		- 11	108
361.8 370.6	1	U 1	1 011		U 1		U 1		U 1	!	U 1		U 1	1-1-	U 1		U 1	1	911	<del></del>	- 111		U 1	1 01		1 11		U 1	113
370,6		U 1	1 011		- 811		U 1		U 1		U 1	+	U 1	1	U 1		- 011		911	<del>-</del>	- 111		U 1	1 01		1 011		U 1	105
381.0	<del></del>		1 011								U 1	+							!!!		- 11		- U 1	1 01		1 011		UII	114
389,9 422.1	<del></del>	U 1	1 01		U 1		U 1		U 1		U 1	+	U 1	<del> </del> !	U 1		U 1		UI I		- 1111		UII	1 011		1 01		UII	109
422.1	<del></del>	U 1	1 011		U 1		<del>- 1</del> 1		U 1		<u> </u>	+	U 1		U 1		U 1		411	<del></del> -	- 0171		- UI1			1 011		- 011	112
449.5		0111	1 011	1	U 1		U 1		U 1		0 1	+	U		U 1		- 91		뭐감	<del></del>	- 11 1		U 1	1 011		1 111		U 1	109
449.3 459.8		U 1	1 1/1		U 1		0 1		U 1		- 11 ]	+	U)	<del>                                     </del>	U 1		- 111		일감		-111		U 1	1 U1	-	1 01	<del></del>	- U 1	109
	1	U 1			U 1		91	!	<del>1</del> 1 1	!	- U 1	+-!	- 0	<del></del>	U 1		- 011		94-		-111		- 011	1 111		1 01		- U1	103
474.3	1 1	U[1]	1 U[1]	1	0[1]	1	U[ 1	11	UI 1	1	U[ 1	1 1	U)	1 1	0[1]	1	0[1]		UII	1	U[1]	1	0 1	1 0 1	/1	1 0[1		0[1]	143





ient: ecation: oject ID: El #: ate Sampled: ate Analyzed: aport Date: GTEOSI Hicksville, NY Groundwater Profiling 03-1402 4/18 - 4/28/05 4/18 - 4/28/05 5/19/2005

LE ID =P 103														
					V	OC DV.	TΑ	ug/L						
	Vinst Cht		t-Dichlorgethene		6-Dightsroeth			Instituteth			Tetrachioroet			%.SS
Depth		value Q DF	Value Q		Value	Q		Vetue	Q	EXF	Value	Q	OF.	
74.0	4	U 4	4 U		4	U		19		4	430		1	105
84.5	1	U 1	1 U	1	1	U		1		1	60		1	105
94.5	1	U 1	1 U		1	U	1	1		1	18		1	84
104,5	1	U 1	1 U		1	Ü	3	1		1	11		1	83
114.5	1	U 1	1 U	1	1	U	1	1	U	1	3		1	83
124.5	1	U 1	1 U	1	1	U	1	1		1	1	Ų	1	80
134,5	1	U 1	1 U		1	U	1	1	U	1	1	U	1	84
144,5	1	U 1	1 U		1	U		1	Ü	1	1	U		87
154.5	1	U 1	1 U	1	1	U	1	1	U	1	. 1	U	1	82
164.5	1	U 1	1 U	1	1	U	1	1	U	1	1	U	1	81
174.5	1	U 1	1 U	1	1	U	1	1	U	1	1	U	1	86
184,2	1	U 1	1 U	1	1	U	1	1	U	1	1	U	1	84
194.2	1	U 1	1 U	1	1	U	11	1	U	1	1	U	1	78
204.2	1	U 1	1 U	1	1	Ü	1	1	U	1	1	U	1	81
214.2	1	U 1	1 U	1	1	U	1	1	U	1	1	U	1	77
224.2	1	U 1	1 U	1	1	U	1	3	U	1	1	U	1	81
234.2	1	U 1	1 U	1	1	U	1	1	U	1	1	U	1	86
244.2	1	U 1	1 U	1	1	U	1	1	U	1	1	U	1	84
253,3	1	U 1	1 U	1	1	U	1	1	U	1	1	Ü	1	84
264.2	1	U 1	1 U	1	1	Ü	1	1	U	1	1	U	1	83
274.2	1	U 1	1 U	1	1	U		1	U		1	U		84
284.3	1	U 1	1 U	1	1	U	1	1	U	1	1	Ü	1	78
294,3	1	U 1	1 U	1	1	Ú	1	1	U		5		1	76
303.5	1	U 1	1 U	1	1	U		1	U	1	8		1	83
333.4	1	U 1	1 U	1	1	Ú	1	1	U	1	8		1	83
344.2	1	U 1	1 U	1	1	U	1	3		1	2		1	76
354.2	1	U 1	1 U	1	1	U	1	3		1	1	U	1	81
376.1	1	U 1	1 U	1	1	Ú	1	1	U	1	1	U	1	78
384.2	1	U 1	1 U	1	1	Ü	1	1	U	1	1	U	1	80
394.2	1	U 1	1 U	1	1	U	1	1	Ü	1	1	U	1	82
404.2	1	UII	1 U	1	1	Ü	11	1	U	1	1	U	11	84

		INORGANIC DATA, mg/L		
Fe**	Fe. Total	Ammonia	Chloride	Chlorine, Tota
nd	0,04	0.02	26	0,50
0.05	0,21	0.13	10	0.05
0,06	0.35	0.03	25	0.03
0,26	2.37	1	68	nd
nd	0,10	nd	89	0,04
0.10	0.42	0,9	131	0.04
0,16	0.58	0.35	174	0.04
0,10	0.25	0.07	155	0.03
1.40	4.80	0.04	185	0.06
0.10	0.29	0.09	149	0.08
0.11	0.32	0,11	66	0,07
0.07	0.24	0.08	180	0.03
0,04	0,11	0.04	167	0.03
0.11	0.28	0.22	205	0.07
0.03	0,06	0,11	255	0.04
0.06	0.18	0.11	151	0.03
0.04	0.09	0.08	218	0.03
0.03	0,04	nd	329	nd
0.12	0.24	0.22	483	0.05
0.06	0.19	0.15	568	0.38
nd	0,08	0.03	658	0.03
0.06	0.30	nd	745	0.03
0.05	0.20	nd	841	0.04
nd	0.03	nd	978	0.02
0.04	0.12	nd	421	nd
0.17	0.75	0,54	41	0.05
0.13	0,16	0.45	18	80,0
0,25	0.40	0.37	17	0.09
0.07	0.12	0,08	21	nd
0.12	0,18	0.18	12	0,03
0.14	0.22	0.37	14	0.08

COELUTING CO	MPOUND:
Freqn 113 / Fre	
	Q p
4	Uli
1	U
1	U i
1	U
1	U
1	U.
1	U:
1	U
1	U
1	U
1	U ·
1	U.
1	U
1	U
1	U
1	U
1	Ų
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U
1	U

															VOC DATA, ug/L														
	1.1-Dichloroet		Etecn 123		1_1-Dichtorget		1.1.1-Trichloroe	thang	Benzene		1.2-Dichlorothane	ė	Louene		Chlorobenzeni		Ethythe	nzene	m.p-)		2:XVI	36	1.3-Dightorober		1.4-Dishlorob		1,2-Dichlorober		%&S
Depth	Value	Q DF	Value	Q DF	Value	g DF	Value	Q DF	Value	9 DF	Value	Q DF	Value	Q 0F	Value	Q DF	Value	<u>Q</u> DE		<u>Q</u> DF	Välue	Q 0F		Q DF		Q DF	Value	Q DF	
74.0	4	U 4	4	U 4	4	U 4	4	U 4	4	U 4	4	U 4	4	U 4	4	U 4	4	U 4		U 4		U 4	4	U 4		U 4	4	U 4	105
84.5	1	U 1	1	UII	1	U[1]	1	U 1	1	U 1	1	U 1	1	U 1	. 1	UII	1	U 1	2	U 1	1	U 1	1	Ú 1		U 1	1	U 1	105
94,5	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	11	U 1	1	U 1	1	U 1	84
104.5	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	83
114.5	1	U 1	1	UI	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	83
124.5	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	80
134,5	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	84
144.5	1	UII	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	. 1	U 1	. 2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	87
154.5	111	U 1	1	U 1	1	U(1	1	UII	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	82
164,5	1	1	1	U 1	2	1	2	1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	2	U 1	1	U 1		U 1	1	U 1	1	U 1	81
174,5	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UI	1	U 1		U 1		U 1	1	U 1	1	U 1	1	U 1	86
184,2	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	2	UI		U 1	1	U 1	1	U 1	1	U 1	84
194,2	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	78
204.2	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	81
214.2	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1		U 1	1	UII	1	U 1	1	U 1	1	U 1	77
224.2	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	81
234.2	1	U 1	t	U 1	1	U 1	1	U 1	1	UI	1	UII	1	U 1	t	U 1	1	U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	86
244.2	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	84
253.3	1	U 1	1	U 1	1	Ú 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	UIII	84
264,2	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	2	U, 1	1	U 1	1	U 1	1	U 1	1	U 1	83
274.2	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	1	1	U 1	1	U 1	84
284.3	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	UII	78
294.3	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	76
303.5	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1	83
333,4	1	U 1	1	U 1	1	UII	1	UII	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	2	U 1	1	U 1	1	U 1	1	U 1	1	U 1.	83
344.2	1 1	U 1	1	U 1	1	UII	1	UI	1	UI1	1	11	1	U 1	1	Uli	1	U 1		U 1		U 1	1	U 1	1	U 1	1	U 1	76
354,2	1 1	UII	1	u 1	1	U 1	1	UII	1	UI 1	1	UII	1	U 1	1	UII	1	U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	81
376.1	1 1	UII	1	U 1	1	UII	1	UII	1	UI1	1	UII	1	U 1	1	UIII	1	UI 1	2	U 1	1	Uli	1	UI 1	1	U 1	1	U 1	78
384,2	1	U 1	1	Ulil	1	U 1	1	UII	1	U 1	1	UI 1	1	Ü i	1	UII	1	U 1	2	U 1	1	UI1	1	ul 1		U 1	1	U 1	80
394.2	1 1	U 1	1	1111	1	U 1		U 1	<del></del>	Ü 1	<del></del>	1111	1	U 1	<del></del>	-Uii	1	U 1		UII		U 1	1 1	ul 1		U 1	1	UII	82
404.2	<del>+</del>	U 1	1	ulil	1	U 1		U 1	<u>i</u>	U 1	<del></del>	U 1	1	UII	1	$\frac{1}{ U }$	1	U 1		U		U 1	<del>                                     </del>	ul 1		U 1	1	U 1	84
104.2								211						211		~1.1			1 4		1		<u> </u>						

ngies with > 100 gob tosal VOC's cannot be rein on a carboven fiber and will have detection limits of 20 ppb S = Surrogash Recovery Undetected below the specified reporting limit. Estimated value. = V data below detection limit. + Alot Sampled.



Citent; Location; Project ID; SEI #; Date Sampled; Date Apabyzed; Report Date; GTEOSI Hicksville, NY Groundwater Profiling 071867-R 62/28/2007-03/20/2007 02/28/2007-03/20/2007 3/22/2007

HOLE ID = P-104				-							
						VOC DATE	A, ug/L				
1	Vinvi Chloris	io	#-Dichteror	thene	p-Dichlorost	hene	Trichlargethene		Tetrachiousethene		% 33
Depth	Value	Q DF	V	NG Q DF	Value	Q SF	Value	Q DF	Value	Q DF	
75.0	1	UII	1	UII	1	UII	1	UII	1	U 1	111
85,0	1	UI		U 1	1	U 1	11	U 1	1	U 1	111
93.4	1	U 1	1	U 1	. 1	UII	1	U 1	1	U 1	103
105.0	1	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	107
112.2	1	U 1	1	U 1	1	Ü 1	1	U 1	1	U 1	113
147,7	11	U 1	1	U 1	1	U 1	. 1	U 1	1	U 1	114
155.1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	102
163.8	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	109
173.1	1	U 1	1	U 1	1	U[1]	3	U 1	1	U 1	114
184,0	1	U 1	1	UI	1	U 1	11	U 1	1	U 1	105
195,0	1	U 1	1	U 1	1	U 1	11	UII	1	U 1	118
205.0	1	U 1	1	UII	1	U 1	4	1	5	1	108
215.0	- 1	U 1	1	U 1	1	U 1	1	U 1	3	. 1	98
224.7	1	U 1	1	UII	1	11	47	11	530	10	99
235.0	1	U 1	1	U 1	10	1	140	10	560	10	107
245.0	1	UI	1	U 1	10	11	230	10	1000	10	112
253.7	1	U 1	1	U 1	1	U 1	2	1	11	1	105
267.8	1	UI	1	U 1	1	11	47	1	39	1	109
291,3	1	UI	1	UI	2	11	19	11	30	11	105
313,9	1	U 1	1	U 1	8	1	210	5	530	5	111
320.0	1	U 1	1	U 1	9	1	940	10	900	10	107
330.0	1	U 1	11	U 1	9	1	730	10	720	10	113
340.0	1	U 1	1	U 1	11	1	840	10	1000	10	108
348.7	1	UI	1	UII	20	13	89	10	3300	10	113
377.4	1	U 1	. 1	U 1	11	1	24	1	3100	10	108
386,0	1	U 1	1	U 1	10	1	18	- 1	2100	10	113
394.7	1	U 1	1	U 1	2	1	3	1	240	10	113
400.0	1	U 1	1	U 1	1	U 1	1	1	95	11	115
411,0	11	U	1	U 1	1	U 1	1	U 1	39	1	112
419,6	11	U 1	1	U 1	1	U 1	11	U 1	63	10	113
427.9	1	U 1	1	U 1	1	U 1	1	U 1	21	1	116
441,1	1	U 1	1	U 1	1	U 1	11	U 1	12	1	120
450.0	1	U 1	1	U 1	1	U 1	11	U 1	15	1	117
461.7	1	U 1	1	U 1	1	U 1	1	U 1	7	1	112
471.0	1	UI	1	U 1	11	U 1	111	U 1	4	1	103
482.4	1	U 1	1	U 1	1	U 1	1	U 1	11	1	121
489.4	1	U 1	1	U 1	1	U 1	1	U) 1	1	U 1	120

		INORGANIC DATA, mg/L		
Fe'	Fe Total	Ammonia	Ghlande	Chlonne, Tuta
ND	0.32	0.06	113	ND
NA .	NA NA	NA NA	NA	NA.
0.06	0.43	0.28	48	0,04
ND	0.18	ND	38	ND
0.05	0.35	0.18	102	0.03
ND	0.12	0.02	67	ND
ND	0,21	0.02	79	ND.
ND	0,19	ND	43	ND
0,04	0.28	0.18	45	0,02
0.11	0.43	0.21	42	0.05
0.12	0.56	0,26	48	0,07
0.23	1.32	0,90	49	0.24
0.15	0,39	0.24	44	0.02
0.36	0.41	0.03	40	ND
0.15	1,04	0.44	28	0.04
0.05	1.90	0.40	14	0.12
0.41	0.51	0.07	12	ND
0.03	0.14	0.07	22	ND.
0.46	25,70	4,9	10	0.68
0.10	0,35	0,19	ND	ND.
0.04	0.15	0.14	15	ND
0.09	0.20	0.02	14	ND
0.08	0.14	0,04	16	ND
0.07	0.16	0.09	16	0.03
ND	0,35	0.11	32	0.03
0.03	0,09	0,11	47	ND
0.05	0.17	0.19	75	0.05
ND	0,10	0.04	39	ND
0.06	0,11	0.06	19	ND
ND	0,27	0.64	34	0.02
0.09	0,21	0.12	39	80.0
0.10	0.22	0.17	35	0.09
0.04	0.06	0.13	26	0.10
ND	ND	0.03	ND	ND
ND	0.09	0.06	ND	0.02
0.07	0.46	0.04	ND	0.06
ND	ND	0.02	ND	0.03

		Freens, ugi	r.		F 47704	
Freen 113		Freen 123			Freori 123A	
Yajue	Q pr	Value	Q E		Value	0.5
1	Ut	11	U		1 1	U
1	U 1	1			1	U
1	UT	1	U			U
1	U 1	1		1		U
1	U 1	1	- U			U
1	Ull	1				
1	U 1	1		1	1	U
1	U 1	1		4_	1	U
1	UI	1		1	1	U
1	UI	1		1		U
1	U 1	1		2	1	U
1	U 1	1		1	1	U
1	UII	1		1	1	U
1	U 1	1		1	1	u
1	- 11	1		1	1	U
11	U t	1		1	1	U
1	U 1	1		1	1	U
1	0 1			1	1	U
	UI	1		1	1	U
1	U 1	1		1	1	U
7	1	1		1	11	U
3	- 1	1		1	1	u
3	11	1	U	1	1	U
1	UI	1		1	1	U
1	U 1	1		1	1	U
1	U 1	1		1	1	U
1	U t	1		t	1	U
1	U 1	1		1	1	U
1	Ut	1		1	1	U
1	U t	1		1	1	U
1	UI	1	U	1	1	U
1	Uı	1	U	1	1	Ų
1	U	1	U	1	1	U
1	UI	1	U	1	1	U
1	U 1	1	U	1	1	Ü
1	UI	1	U	1	1	U
1	U 1	1	U	1	1	u

		T T							VOC DATA, ug				·				
1						Carkon Tetrachionsie		1.3-Dichlerothane	Loberne	Chlorobenzene							%SS
8.8   1																	
99.4								1 0 1			1 U U	1 U 1				1 0	111
1952   1   1   1   1   1   1   1   1   1																	
1122 1 01 1 01 1 01 1 01 1 01 1 01 1 01			1 U 1	1 01				1 U 1	1 U	1 U	1 1 01	1 U 1	1 U	1 01	1 U 1	1 0	103
167. 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1											1 0 1					1 0	
1953. 1 U			1 U 1	1 0 1				1 U 1									113
1921 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1																	
77.3.   1   1   1   0   1   1   1   1   1   1													1 0	1 1 0 1	1 011	1 0	102
19:0   1   1   1   1   1   1   1   1   1																1 0	109
19:0   1   1   1   1   1   1   1   1   1																1 0	1 114
26.0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0																	
25.50   1   0   1   1   0   1   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0																1 0	1 115
226.7   1   1   1   1   1   1   1   1   1		1 U 1	1 01					1 U 1	1 0	1 U			1	1 0 1			
28.6.								1 U 1									
248.0   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U   1   U		1 u 1															
253,7   1   1   1   1   1   1   1   1   1								1 0 1									
267.8   1   1   1   1   1   1   1   1   1			1 01	1 01				1 0 1			1 01	1 U 1					
2613																	
313.9   1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1   U    1																	1 109
220.0 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1																	
38.0.0 1 1 1 1 V 1 1 V 1 1 1 1 1 1 1 1 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V															1 U 1	1 0	1 111
349.7   1   1   1   1   1   1   1   1   1																	
349.7   1   1   1   1   1   1   1   1   1												1 U 1				1 U	1 113
377.4												1 011					
36.5 0 1 0 1 1 0 1 1 0 1 2 1 2 1 2 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0																	1 113
394.7   1   1   1   1   1   1   1   1   1																	
4000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																1 0	1 113
41:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 U 1					1 0 1									
427.0 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1						1 U 1									1 011	1 0	1 115
427.0 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1			1 01	1 01	1 0 1		1 U 1	1 U 1			1 1 1	1 U 1	1 (	1 1 0 1	1 U 1	1 U	1 112
441. 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1			1 01	1 01	1 U 1						1 1 1				1 U 1	1 0	1 113
48(0) 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1		1 01	1 U 1	1 U1	1 U 1			1 01			1 1 1	1 U 1	1 1	J1 1 U1	1 U 1		1 116
4617 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	
47:0 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U			1 U 1	1 U 1												1 U	1 117
482.4 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1																	
489.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1																	
Secription with 1960 gate initial YCC's cannot be run in a carborate rifler and with these extendion itselfs of 20 pages 1967 Secription Recovery 4 Understood begins the specified reporting itself.		1 0 1															1 121
16.55 - Surrogala Recovery U = Undetected below its apocified reporting limit.					1 0 1	1 U 1	1 U 1	1 01	1 U	1 1 0	1 1 1	1 U	1 (	1 1 01	1 0 1	1 U	1 120
U = Undervoted belies the specified reporting limit.	Samples with >100 ppb to:	tal VOC's cannot be run on a c	carboxen liber and will have	e detection limits of 20 ppb													
	%SS = Surrogate Recovery	γ															
	U = Undetected below the	specified reporting limit.															
THE THINK STONE WITHOUT AND																	
MA = Not Anjilyved		on more.															
An - most Anlaysted	sa - mus Analyzed																





ient: ocation: (oiect ID; E1#: ate Sampled: ate Analyzed: sport Date: GTEOSI Micksville, NY Groundwater Profiling 03-1402 5/16 - 5/25/05 5/18 - 5/25/05 5/31/2005

HOLE ID =P107									
					OC DATA, ug/	L			
	Vanyi Chilori	de	1-Dichloroethene	c-Dichlerost		Trobloroethene	<u>Tidrischlorgethene</u>		% SS
Depth		abe Q DF	Value Q DF	Value	Q DF	Value Q (		DF	-Musture
74.30	1	UI1	1 U 1	1	UII	1 11	1 2	11	95
84,30	1	U 1	1 U 1	1	UII	1 U		111	102
94.30	1	U 1	1 011	1	U 1	1 U	1 1 1	111	95
104,30	1	UII	1 0 1	1	U 1	1 U	1 1 1	111	103
114.30	1	U 1	1 U 1	1	U 1	1 U	1 1 t	1 1	99
124.30	1	U 1	1 U 1	1	U 1	1 U	1 1 L	11	107
134.30	1	U 1	1 U 1	1	U 1	1 U	1 1 1	11	94
144.30	1	U 1	1 U 1	1	U 1	1 U	1 1 L	11	98
154,30	1	U 1	1 0 1	1	U 1		1 1 1	1	114
164.30	1	U 1	1 U 1	1	U 1		1 1 (	1 1	104
174.30		U 1	1 U 1	1	U 1		1 1 L	1 1	116
184.30	1	U 1	1 U 1	1	U 1		1 1 L		110
194,30	1	U 1	1 01	. 1	U 1		1 1 L		100
204.20	1	U 1	1 U 1	1	U 1			1	120
214,20	1	U 1	1 U 1	11	U 1			J 1	110
224.20	1	U 1	1 U 1	1	U 1		1 1 1		106
234.20	1	U 1	1 U 1	1	U 1	1 U		1 1	116
244.20	1	U 1	1 U 1	1	U 1			11	106
254.20	1	U 1	1 U 1	1	U 1		1 1 1		106
264.20	1	U 1	1 0 1	1	U 1			1	107
274,20	111	U 1	1 U 1	1	U 1		1 1 L		111
285.80	11	U 1	1 U 1	1	U 1		1 1 L		110
294,20	1	U 1	1 0 1	1	U 1	1 U		11	104
304.20	1	UJ 1	1 UJ 1	1	UJ t			J 1	107
316.40	11	UJ 1	1 UJ 1	1	UJ 1	1 UJ		J 1	91
324.05	1	U 1	1 U 1	1	U 1		1 1 1		108
334.05	1	U 1	1 0 1	1	U 1		1 1 5		101
350.20	1	U 1	1 U 1	1	U 1	1 U		11	102
359,30	1	U 1	1 U 1	1	U 1	1 U		11	101
371,60	1	U 1	1 U 1	1	U 1	1 Ü		11	114
378,20	1	U 1	1 01	1	U 1	1 U			106
391.50	1	U 1	1 U 1	1	UII	1 U	1 1 (	11	103

		INORGANIC DATA, mg/L		
Fe ^{Ts}	Fe, Total	Ammonia	Chloride	Chilonne, Tota
ND I	0.03	0.04	118	0.03
0,06	0.11	0.08	88	0.04
0.16	0.40	0,14	92	0.17
0.16	0.31	0.10	53	0,17
0.07	0.15	0.10	239	0.12
0,05	0,08	0.09	104	0.09
0.05	0.10	0.09	90	0.07
0.05	0.06	0,04	93	0,04
0.04	0.07	0,04	117	0,02
0.04	0.10	0.04	301	0.03
0.04	0.05	0.02	374	0.04
0.04	0.09	0.08	398	0.04
0,09	0,13	0.05	389	0.09
0.03	0.03	0,04	424	0.04
0.03	0,08	0,06	507	0,06
0.04	0.16	0.10	481	0.00
0,03	0.07	0.04	523	0.00
ND	0.05	0,05	526	ND
0,10	0,59	0,26	437	0.09
0.03	0.04	ND	14	ND
0,03	0,38	0.49	- 8	ND
ND	0.06	0.17	11	ND
0.07	0.07	ND	11	ND
0.20	5.90	0,3	43	0.00
0.05	0,17	0,31	105	0.07
0,15	0.29	0.26	18	0.13
0.14	0.51	0,37	- 8	0
0.05	0.15	0.03	6	ND
0.04	0.08	0,15	7	ND
0.14	0,35	0.28	_ 7	0,04
0.03	0.10	0.07	6	ND
0.04	0.18	0.03	6	ND

COELUTING CO	
Frequ 113 / Fre	
	Q D
1	U
1	U
1	U
1	U
1	U
1	U
11	U
1	U
1	U
1	U
1	U
1	U
11	U
11	U
1_	U
1	U
1	U
1	U
11	U
1	U
11	U
1	U
1	U
1	U
1	U
111	U
1	U)
1	U
11	U
11	U
1	U
11	U

		***************************************					VOC DATA, ug/L		***************************************			····		
	1.1-Orchloroethene	Ereon 123	1.1-Dichloroethane	5,1,1-Trichloroethane	Benzene	1.2-Dishlorothane Talus		E)	hybenZene	m.p-Xviene	o-Kvlene	1.3-Dichtorobenzene	1.4-Dichlorobenzene	1.2-Dichlorobergene WSS
Depth	Value C DF	Value Q DF				Value O.DF Value	ODF Value			Value Q DF	Value O DE	Valve C DF	Value O DE	Value Q DF
74,30	1 01	1 U 1	1 U	1 1 0 1	1 0 1	1 011 1	0 1 1		1 011	2 U 1	1 0 1	1 0 1	1 UI1	1 0 1 95
84.30	1 01	1 01	1 U			1 01 1	U 1 1	U 1	1 U1	2 U 1	1 U 1	1 01	1 011	1 U 1 102
94.30	1 01	1 U 1	1 U	1) 1 U 1	1 01	1 01 1	U 1 1	U 1	1 0 1	2 U 1	1 01	1 U 1	1 U 1	1 0 1 95
104.30	1 U 1	1 U 1	1 U	1 1 U 1	1 U 1	1 01 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 103
114,30	1 0 1	1 U 1	1 U	1 1 0 1	1 U 1	1 01 1	U 1 1	U 1	1 01	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 99
124,30	1 U 1	1 01	1 U	1 1 0 1	1 01	1 U 1 1	U 1 1	U 1	t U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 107
134,30	1 U 1	1 U 1	1 U	1 1 0 1	1 01	1 01 1	U 1 1	UII	1 U 1	2 U 1	1 U 1	1 U 1	1 0 1	1 U 1 94
144.30	1 0 1	1 U 1	1 U	1 1 U 1	1 U 1	1 01 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 98
154,30	1 0 1	1 01	1 U			1 0 1 1	U 1 1	U 1	1 01	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 114
164.30	1 01	1 U 1	1 U			1 01 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 104
174,30	1 0 1	1 01	1 U			1 U 1 1	U 1 1	U 1	1 U 1	2 U 1	_ 1 U 1	1 U 1	1 0 1	1 0 1 116
184.30	1 9 1	1 U 1	1 U			1 U 1 1	U 1 1	UII	1 U 1	2 U 1	1 U 1	1 U 1	1 0 1	1 U 1 110
184.30 194.30	1 0 1	1 U 1	1 U	1 1 0	1 U 1	1 01 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 0 1	1 U 1 100
204.20	1 0 1	1 U 1				1 0 1 1	U 1 1	U 1	1 01	2 0 1	1 U 1	1 U 1	1 U 1	1 0 1 120
214,20	1 01	1 U 1				1 U 1 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 110
224.20	1 U 1	1 0 1		1 1 0 1		1 U 1 1	U 1 1	U 1	1 0 1	2 U 1	1 0 1	1 U 1	1 U 1	1 U[1] 106
234.20	1 U 1	1 U 1		1 1 U 1	1 0 1	1 U 1 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 01	1 U 1 116
244,20	1 U 1	1 U 1	1 0	1 1 0		1 0 1 1	U 1 1	U 1	1 U 1	2 U 1	1 01	1 U 1	1 0 1	1 U 1 106
254.20	1 0 1	1 U 1	1 U	1 1 U	1 0 1	1 U 1 1	U 1 1	U 1	1 U 1	2 01	1 U 1	1 0 1	1 0 1	1 U 1 106
264.20	1 0 1	1 U 1	1 U	1 1 U		1 0 1 1	U 1 1	U 1	1 0 1	2 0 1	1 01	1 U 1	1 0 1	1 U 1 107
274.20	1 U 1	1 U 1	1 U	1 1 U	1 U 1	1 01 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 0 1	1 0 1 111
285.80	1 U 1	1 U 1	1 U	1 1 U	1 U 1	1 U 1 1	U 1 1	UII	1 01	2 U 1	1 U 1	1 U 1	1 U 1	1 0 1 110
294,20	1 0 1	1 U 1	1 U	1 1 0	1 0 1	1 01 1	U 1 1	U 1	1 0 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 104
304.20	1 UJ 1	1 UJ 1				1 UJ 1 1	UJ 1 1	UJ 1	1 UJ 1	2 U. 1	1 UJ 1	1 UJ 1	1 0.11	1 UJ 1 107
316,40	1 UJ 1	1 UJ 1				1 UJ 1 1	UJ 1 1	UJ 1	1 UJ 1	2 UJ 1	1 UJ 1	1 UJ 1	1 UJ 1	1 UJ 1 91
324.05	1 U 1	1 U 1		1 1 U	1 U 1	1 01 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 108
334,05	1 01	1 U 1	1 U			1 0 1 1	U 1 1	UII	1 U 1	2 U 1	1 U 1	1 U 1	1 U 1	1 U 1 101
350,20	1 U 1	1 U 1	1 U	1 1 U	1 1 U 1	1 0 1 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 01	1 U 1	1 U 1 102
359,30	1 U 1	1 U 1	1 U		1 1 U 1	1 0 1 1	U 1 1	UII	1 U 1	2 U 1	1 01	1 U 1	1 01	1 U 1 101
371,60	1 U 1	1 U 1	1 U	1 1 U	1 1 01	1 01 1	UII I	UII	1 U 1	2 U 1	1 U 1	1 U 1	1 01	1 U 1 114
378.20	1 U 1	1 U 1	1 U	1 1 U		1 011 1	U 1 1	UII	1 U 1	2 U 1	1 01	1 U 1	1 01	1 0 1 106
391,50	1 U 1	1 U 1		1 1 U		_ 1 U 1 1	U 1 1	U 1	1 U 1	2 U 1	1 U 1	1 U 1	1 01	1 U 1 103

typics with 7-100 pilo total VOC's cannot be run on a certoxen fiber and will have describen limits of 20 ppb

3 = Surragate Recovery

(Lindescribe flowing the specified reporting limit.
Examinate value.

Examinate value.

*The analyse was not detected above the specified reporting limit. However, the reporting limit is approximate and may or may not represent the exhal limit of quantitation necessary to accurately and procisely measure the analyse in the sample.

**All Association Flowing Examinate Section 1. "Laboratory Dilution Factor



**DRAFT** 

# bile Laboratory Results Sheet

inti
sation;
ject ID;
#:
e Sampled;
e Analyzed;
sort Date; GTEOSI Hicksville, NY Groundwater Profiling 03-1402 5/02 - 5/02/05 5/02 - 5/02/05 6/19/2005

HOLE ID =P108											
						VOC DATA,	ug/L				
	Yrayl Chic	nde	t-Cichtoroethe	02	e-Dichloroet	hene	Trichlorcett	etic	Tetrachlorogt	bene	34.SS
<u>Depth</u>	У	fatue Q DF	Value	Q DF	Value	Q DF	Value	Q DF	Value	G DF	
74.15	20	U 1	20	U 1	360	1	670	4	32000	240	107
84.15	_20	U 1	20	U 1	69	1	250	1	20000	192	106
94.15	20	UII	20	U 1	20	U 1	20	U 1	6100	24	93
104,15	1	U 1	1	U 1	1	1	5	1	160	1	96
114,15	1	U 1	1	U 1	1	U 1	1	UII	29	1	77
124.15	1	U[1]	1	U 1	1	U 1	1	1	23	3	78
134,15	1	U 1	1	U 1	1	U 1	1	U 1	15	1	110
144.15	1	U 1	1	U 1	1	U 1	1	U 1	28	1	111
154.15	1	U 1	1	U 1	1	UI	1	U 1	18	1	110
164.15	1	UII	1	U 1	1	U 1	1	U 1	14	1	107
174,15	1	U[1]	1	U 1	1	UII	1	U 1	17	1	91
184,15	1	U 1	1	U 1	1	UII	1	U 1	8	1	91
192.80	1	U 1	1	U 1	1	U 1	1	U 1	8	1	103
204,60	1	UII	1	U 1	1	U 1	1	UII	1	1	100
214,60	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	110
224.60	1	U 1	1	U 1	1	U 1	1	U 1	7	1	119
234,60	1	UII	1	U 1	1	U 1	1	U 1	1	1	99
244,60	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	105
254,60	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	114
264,60	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	114
293.40	1	U 1	1	U 1	1	U 1	1	U 1	1	1	119
324.35	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	116
334,35	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	103
347.65	1	U 1	1	U 1	1	UII	1	UII	1	U 1	103
359,30	1	UII	1	U 1	1	Üİİ	1	UII	1	Ü i	103
384.30	1	U 1	1	U 1	1	U 1	1	U 1		U 1	117
394,30	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	108

	H	NORGANIC DATA, mg/L.		
Fe*4	Fe, Total	Ammonia	Chloride	Chlorine, Tob
0.04	0.07	0.07	21.5	0.05
0.07	0.16	0,09	26.6	nd
nd	0.07	0.14	16.3	0.10
0.06	0.21	0.47	26.6	0.06
0.32	0.87	0.69	94.0	0.33
0.07	0.15	0,16	183	0.03
nd	0,03	nd	43.1	nd
0.05	0.08	0.07	37.5	0.03
0.19	0.82	0.57	123	0.23
0,06	0,14	0,16	275	0.05
nd	0.07	0.03	118	nd
nd	0,03	nd	94.2	0.03
nd	0.03	nd	101	nd
0,09	0.19	0.07	85.3	0.06
0.05	0.08	0.06	160	nd
0.12	0.23	0.05	201	0.04
nd	0.04	0,05	370	0.03
0.03	0.04	0,05	304	nd
0.03	0.05	0.06	327	nd
0.05	0,19	0.16	391	0.04
nd	nd	nd	489	nd
0.07	0.30	0.21	119	0.03
0.18	1.60	1.36	108	0.08
22.00	126,00	11	8.95	nd
8,20	313.00	0,11	9,41	0.51
0.08	0.17	0.06	7.19	0.03
0.26	0.68	0,49	5	0.12

COELUTING COR Engan 113 / Fre		S
Frequ 1137+79		
	Q r	
20		1
20		1
20		1
1		1
1		1
1		1
1		1
1		1
1		1
1		1
1		1
1		3
1		1
1	U	1
1		1
1		3
1	U	1
1		1
1	U	1
1		1
1	U	1
1	U	1
1	U	1
1	U	1
1	U	1
1	U	1
1	Ш	1

Position   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value   Q.P.   Value		Γ	·····				***************************************							
Page   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value   Q.C.F.   Value									VOC DATA, ug/L					ļ
74.16 29 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1											m.p-Xylene o-Xyl			
8416 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 2														
9415 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 20 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 30 U1 3														
104.15	84.15													
1415		20 U					20 U	1 20 U 1		20 U 1		U[1] 20 U	1 20 U 1	
12415		1 U	1 1 U	1 1 U	1 1 0	1 U 1	1 0	1 1 U 1	1 01	1 U 1	2 U 1 1		1 1 0 1	
13415		1 U	1 1 U	1 1 0	1 1 U	1 1 U 1	1 U	1 01	1 01	1 0(1)	2 0 1 1	U 1 1 L	1 1 U 1	
14445					1 1 U	1 1 U 1	1 U	1 1 U 1	1 U 1	1 0 1	2 01 1	U 1 1 U	1 1 U 1	1 U 1 78
14415					1 1 0	1 1 0 1	1 U	1 1 U 1	1 U 1	1 1 1	2 U 1 1	U 1 1 L	1 1 U1	
15415   1	144,15	1 U	1 1 U	1 1 U	1 1 U	1 1 U 1	1 0	1 1 0 1	1 U1		2 01 1	Ulil 1 L	1 1 0 1	1 U 1 111
16415 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1		1 U	11 1 U		1 1 U	1 1 0 1	1 U	1 1 U 1	1 U 1	1 U 1	2 U 1 1	U 1 1 L	1 1 U 1	
17415 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1		1 U			1 1 U	1 1 0 1	1 U	1 1 U 1	1 U 1		2 U1 1	U 1 1 L	1 1 U 1	1 U 1 107
19435 1 U11 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1		1 U	1 1 U	1 1 U	1 1 0		1 U	1 1 U 1	1 U 1	1 U 1	2 U 1 1	U 1 1 L	1 1 U 1	1 U 1 91
19280 1 U11 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1	184,15	_ 1 U	1 1 U	1 1 U	1 1 U		1 U	1 1 0 1	1 U 1	1 U 1		U 1 1 L	1 1 U 1	
24400 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1		1 U	1 1 U	1 1 U	1 1 U	1 1 U 1	1 U	1 1 01	1 01	1 U 1	2 U 1 1	U 1 1 L	1 1 U 1	1 U 1 103
24400 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1		1 U	1 1 U	1 1 U	1 1 U	1 1 U 1	1 U	1 1 0 1	1 U 1	1 U 1	2 U1 1	U 1 1 L	1 1 U 1	1 U 1 100
22460 1 U11 1 U1 1 U1 1 U11 1 U11 1 U1 1 U1	214,60	1 U	1 1 U				1 U	1 1 U 1	1 U 1			U1 1 L		1 U 1 110
2440 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1		1 U	1 1 U	1 1 U	1 1 U	1 1 0 1	1 U	11 1 Ul1	1 011	1 U 1		U1 1 U		1 U 1 119
24400 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1	234,60	1 U	1 1 U	1 1 U	1 1 U	1 1 U 1	1 U	1 1 0 1		1 U 1		U 1 1 L	1 1 11	1 U 1 99
25460 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 U	244,60	1 U	1 1 U	1 1 U	1 1 U	1 1 U 1	1 U	1 1 0 1	1 U 1	1 0 1	2 U 1 1	U 1 1 L	1 1 U 1	1 U 1 105
28480 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 0/1	254.60		1 1 U	1 1 0		1 1 U 1	1 U	1 1 0 1	1 01	1 U1	2 U 1 1	U 1 1 U	1 1 U 1	1 U 1 114
293.90						1 1 U 1	1 U	1 1 011	1 01	1 U 1	2 01 1		1 1 01	1 0 1 114
324.55	293.40	1 U	1 1 U	1 1 0	1 1 U	1 1 U 1		1 1 01	1 01	1 U 1	2 01 1		1 1 01	1 U 1 119
33435 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1	324 35	1 U	1 1 U	1 1 U	1 1 U	1 1 0 1	1 U		1 U1	1 0 1	2 01 1		1 1 011	
347.65 1 UI 1 UI 1 UI 1 UI 1 UI 1 UI 1 UI 1 U	334,35	1 1 1	1 1 U	1 1 U	1 1 U	1 1 1 1 1	1 1	1 1 111		1 1111	2 11 1			
359.30 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1 U1 1	347.65													
384,30 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	359.30	1 1	1 1 0			1 1 1 1			1 111	1 111	2 11 1		1 1 11	
		1 1	11 1 0	1 1					1 111	1 111	2 1111		111	
394.30   1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U 1  1 U	394,30	<del>                                     </del>							1 01	1 01	2 011	<u> </u>	1 1 011	1 U 1 108

ples with >100 ppb total VOC's cannot be run on a curboven (there and will have detection limits of 20 ppb "Surragate Recovery Indirected about see specified reporting limit. Istimated value. Value below detection limit. Laboratory Olition Pactory



Client:
Location;
Project ID:
SEL#:
Date Sampled:
Date Applyzed:
Report Date; GTEOSI Hicksville, NY Groundwater Profiling 971887-R 6/14/2007-7/03/2907 6/14/2007-7/03/2907 7/10/2007

					VOC DATA U					
	Vinal Citio		t-Dichlargethane	p-Dichlospet	bene	Tochloses		Tetrachiscoe		3.33
Depth	١.	Walte Q DF	Value CLDF	Value	QDF	Value	Q DF	Value	Q DF	
71.3	1	UII	1 0(1)	1	U 1	1	0 1	1	U 1	108
80,2	1	U 1	1 U 1	1	UII	1	U 1	1	UII	106
91.0	1	U 1	1 U 1	3	U 1	1	U 1	1	U 1	109
99,7	1	U 1	1 u 1	1	U 1	1	U 1	_1_	U 1	110
108.6	1	U 1	1 U 1	. 1	U 1	1	U 1	1	U 1	111
119.7	1	U 1	1 111	1	UII	1	U 1	1	U 1	112
142.6	1	U 1	1 01	1	U 1	1	U 1	1	U 1	102
150.2	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	107
160,2	1	U 1	1 U 1	1	UI	1	U 1	1	U 1	105
170.2	1	U 1	1 011	1	U 1	1	U 1	1	U 1	106
180.2	1	U 1	1 01	1	U 1	1	V 1	1	U 1	107
190,2	1	U 1	1 U1	1.	1	1	U 1	2	1	108
199,9	1	U 1	1 U1	_1	U 1	1	U 1	1	U 1	108
209.6	1	UII	1 011	1	UII	1	U 1	1	UIT	109
221.8	1	UII	1 01	1	UII	. 1	U 1	1	U 1	110
229.7	1	U 1	1 U1	1	U 1	1	U 1	1	U 1	109
239.8	1	U 1	t U11	1	U 1	1	11	1	UII	109
249.2	1	U 1	1 U 1	1	U 1	2	1 1	1	U 1	111
260.2	111	U 1	1 U 1	1	U 1	4	1	1	U 1	119
269.8	1	U 1	1 01	1	U 1	13	1	1	11	111
281,7	1	U 1	1 U 1	1	U 1	24	1	1	1	103
290.2	1	U 1	1 0 1	1	U 1	20	1	1	1	103
311.3	1	ü 1	1 11	1	U 1	1	U 1	1	U 1	107
320,2	11	U 1	1 01	1	UI	1	U 1	1	U 1	107
329.2	. 1	U 1	1 U 1	T	Ull	12	1.	2	1	107
338.8	1	U 1	1 01	4	1.	120	10	6	1	109
350.2	11	U 1	1 01	19	1	400	100	26	11	111
359.4	1	UII	1 0 1	6	11	150	111	22		107
391.1	1	U 1	1 U 1	1	U 1	80	1.1	51	[1]	103
400.0	- 1	U 1	1 U 1	3	11	220	1_	62	1	100
408.5	11	U 1	1 U 1	1	U 1	100	11	80	11	103
421.2	1	U 1	1 U 1	3	11	13	1 1	350	11	100
429.4	1	U 1	1 01	4	1	21		486	24	99
439.3	111	U 1	1 U 1	13	1	28	1	2100	48	101
452.2	1	U 1	1 01	3_	1	10	1 1	120	1	102
460.2	111	0.1	1 U 1	2	1	12	1	57	131	107
470.1	1111	U 1	1 U1	111	11	15	1	36	1	100
481,7	1	U 1	1 01	1	U 1	3	1	26	1	10
489,5	1	Uli	1_ U 1	1	U 1	2	1	5	1	101
499.5	1	UI1	1 011	1.	UI1	2	111	3	11	10

		NORGANIC DATA, mg/L		
Fe'-	Fe. Total	Ammonie	Chloride	Citionne, Total
0.22	0.48	0.13	26	0.05
0.24	0.34	0.09	24	QN QN
0.09	0,29	0,02	37	ND
0,07	0.30	0.02	36	ND
0.21	0,33	0.90	19	14D
0.41	0.94	1,30	33	0.05
0.43	0.54	0,11	29	0,10
0,40	0.42	0,08	35	ND
0.24	0.26	0.12	35	ND
0.13	0.81	0,12	24	0,04
0.24	0,64	0,19	28	0.28
0.32	0.56	0,28	28	0.06
0.30	0.71	0.20	40	0.07
0.62	1.20	0.40	42	0.19
0.51	1.25	ND	39	1.14
0.71	2.12	0,60	40	0.03
0.29	0.45	0.12	36	ND
0.43	0.61	0.21	. 36	0.03
0.55	0.82	0.22	22	0.07
0.27	0.54	0.17	20	0.04
0.26	0.39	0.15	20	ND
0,15	0.34	0.07	21	ND
0.28	0.63	0.22	20	0.04
0.43	0.74	0.31	27	0.11
0.32	0.45	0.32	18	0.08
0.19	0.43	0,20	18	0.12
0.15	0.21	0.15	17	0.03
0.14	0.35	0.21	20	0.05
0.04	0.04	0.07	13	ND
0.05	0.48	0.08	17	NO.
ND	0.04	0.07	18	ND
0.03	0.04	0.03	23	ND
ND	0.04	0.03	16	ND
0.05	0.12	0.08	18	ND ND
ND ND	0.06	0.04	11	0.02
0.23	0.51	0.19	ND	0.02
ND	9.05	0.02	ND ND	ND ND
0.19	0.40	0.30	14	0.14
0.19	0.77	0.09	29	0.04
0.32	0.62	0.40	13	0.09
0.15	0.36	0.08	ND ND	0,20

Freen 113	٥	DF	Freens Freen 123 Value	Q	DF	Freen 123A Value	Q
	U	1	1	Ü	11	1	U
	V.	1	1	-ŭ	i		Ū
1	Ŭ		1	Ü	1	1	Ü
1	U	1	1	Ü	1	1	Ü
1	Ū	1	1	Ü	1	1	Ü
1	Ū	1	1	U	1.	1	Ü
1	Ü	1	1	U	1	1	U
1	Ų	1	1	U	1	1	U
1	U	1	1	U	1	1	U
1	U	1	. 1	U	1	1	U
1	U	1	1	U	٦	1	U
1	U	3	1	U	1	1	u
1	U	3	1	U	1	1	U
1	U	1	1	Ü	1	1	Ų
1	U	1	11	U	П	1	U
1	Ü	1	1	U		1	Ų
1	U		1	U	1	1	U
1	U	1	1	U	2		Ļ
1	U	1	1	U	5	1	U
1	Ų	1	1	U	ï	1	Ü
1	Ų		1	U	ŧ	1	Ų
1	Ų	1	1	U		1	U
1	U	1	11	U	1	1	يا
1	U	1	1	U	1	1	L
1	U	1	1	U	1		L
2		1	1	U	2	1	-6
8		11		- 11	1	<del></del>	-
3	_	1	<del> </del>	- 0	1	<del></del>	-
11	U	1		-0	1		-
4			1	-8	1		-
	<u>. U</u>		1	-11	1		
1	씏			-ŏ	1	1	+
	₩	1	1	<u>U</u>	1		÷
<del></del>	Ü		<del>                                     </del>	<del>U</del>	1		-
	- 1		1	−ŭ	Ť		Ť
			1-1-	÷ΰ		<del></del>	-
1	-8			6		<del></del>	一
			<del></del>	0		+	-
1					17	<del>                                     </del>	÷
				-0			t

																	,	OC DATA	. ug/L															
	5, F=Dichtoro	etheric	1.1-Dish	luccettane	1.	1,5-Thtilloroethane		1.1.1.3-Tetrachio	proethage	Carbon Tetra	chloride	1	enterne		1.2-Dictriores	hans	Toluer	9		Chlorobenzene		Ethylbergene		m.p.Xxlent		g-Kylerne		1.3-Dichlorobenzer	te.	1.4-Dichtorobers		1,2-Dichlorob		%89
Depth)	Value	Q DF	Value	0.0	F	Value G	DF.	Value	Q DF	Value	Q DF	Va	ue :	o DF	Value	<u> </u>	F Value	9.0	NF.	Value G	DF.	Value	Q DF	Value	Q DF	Value	Q DF	Value	Q DF	Value	g DF	Vetos	Q DF	
71,3	1	0 1	1	U	1	1 (	1	1	U 1	1	U 1			11	1	U 1	1	U	1		1 1	1	U 1		U 1	1	U 1		비비	1	Ulal	1	U 1	
80.2	1	U 1	- 1	U	1	1 (	/III	1	U 1	1	U			U[1]	1	U 1	3	U	1		111	1	U[1]	1	U[1]	1	U 1	1	U 1	1	U 1	1	U 1	
91.0	1	U 1	1.	Ü	1	1 L	71	1	U 1	111	U 1			U 1	1	U[1	1	U.	1		11	1	U 1	1	U[1]	1	U 1	1	U 1	1	Ull		U	109
99.7	1	U 1	1_	Ų	1	1 4	41	1	U 1	1	U 1			U 1	1	U 1	1 1	U.	1	1 1	1 2		U 1		U 1	1	UII		U 1	1	U 1	1	U 1	
108.6	1	UIT	1	U	1	1 4	11	1	U 1	1	U 1			U[1]	. 1	U 1	t	U.	1	1 L	1 1		U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	111
119.7	11	U 1	1_	U	1	1 L	41	1	U 1	11	U 1	1		/ 1	11	U 3	1	U.		1 L	11	1	U 1		U 1	1	UIT		UII	1	니타	1	U 1	
142.6	1	U 1	1	U	11	1	44	11	U 1	1	U 1	<u> </u>		U 1	11	U 1	1	- U		1	41	1	U 1	1	U 1	1	U 1	1	U 1	1	UI1	1	U 1	
150.2	111	U 1	1	U		1 1	11	1	U 1	1	U 1	<u> </u>		UIT	1	U 1	1	U		1	11	1	U 1	1	U 1		U 1				UII		U 1	
160.2	11	U 1	1	U		11	111	1	U 1	111	U 1			U t	11	D 1	11	U.	1	1	41		UII	1	011	1	U 1		U 1		0 1		U 1	
170.2	1	U 1	- 1	U		1 1	41	1	U 1	11	U 1	ļ .		UII	1	U]	11	U.	1	_1	411	1	UII		U 1		U 1		UII		U 1	1	U 1	
180,2	11	UI	1	U		1	44	1	U 1	11	U 1	-		U	1	U	1	U			411-		U 1		VIII		U 1		U 1		U 1			
190,2	1	U 1	1	U			411	1	U 1	1	U 1			U 1	1	U 1		U			411-		U 1		011		U 1	!	U 1		VII		U 1	108
199.9 209.6		U 1		, U			41	1	U 1	11	U 1			U 1		- 보1		U)		1	44-		빙카		VIII-		UIT		하		UIT		U 1	
		U 1		U	4		44		<u> </u>	1	U 1	1		U 1	1		1	U		1	431-		414-		U 1		UIT		011		U11		- Uli	
221.8 229.7	1	U 1		U	1	_1	44	1	U 1	<del>                                     </del>	U 1			U[1]		U 1	1	U		_1	411	1	U111		백기.		unn		U 1		U 1		UII	
239.8	1	U 1		- 0	1		44		V 1	1	U 1	-		UI1		- U 1	1	U		_!	411		U 11	!	ᄣ		U 1		U 1		UII			
239.8	1	U 1		U			41		U 1		U] 3			U[1]		U :		U		1 1	111		U[1]		911		U 1		뭐귀		U 1		U 1	111
260.2	1						411	!_	U 1	<del> </del>	- U 1			011	1	U	+	U			44		011	<del></del>			0 1		011		UIT		111	
269.8		- 111		U			##-	!	U 1	1 1		-				U 1		- 0			31-1		VI 1		911		9131		1111		- 111		Uli	
281,7					1		44-		-4	<del> </del>		+		UIT		- U		- 0			11		- 1		911		U 1	<del></del>	1111			<del></del>	U 1	
290.2	1 1				1		##		1// 1	1 1	- 011	-		U 1		- 8	+	0			##		011			1	U 1		911		- 111		- U 1	103
311.3							44		0 1	1	- 0 1	-		011		6					##		0 1		U 1		U 1		911		1111		- U1	
320.2				U			44		11 1	<del></del>				011				- 0			111		911		011		- 61 11		<del>1111</del>		11111		U 1	107
329.2	<del>-</del>	- 514		- U			111		U 1	2		+		UII		Ü.	1				111	<del></del>	<del>Ŭ1</del>		111	<del></del>	- Ŭ 1		UI 1	<del></del>	1111		U 1	
338.8	4			11		•	111		U 3	4		+		U 1		<del>11</del> 1:	+				111		1111	<del></del>	Mil-		1011		ŭH		1111		U 1	109
350.2	11		2		1		+++	<del></del>	U 1			+		UII	<del></del>	12	-	- U			111		011		UI1		011		<del>ŭH</del>		UI:		UI1	
359,4	7		<del></del>		1	<u>'</u>	11		111 3		- +	+		11111		UI.		- 11			111		Ŭ		UII	1	- 11		Ul 1		- ilit		1/11	
391.1	17				1	11	111		11 1	18	-+:	<del> </del>		Ulil	1	Ű.	<del>                                     </del>		1		111		1111	1	111		1113		ŭi i	<del></del>	11/1	1	1011	103
400.0	16	11	1	Ü	1	10	11		U 1	14				ŭi i	1	ŭ.	· -	Ü	1		Jii	1	ŭli -		ŭi i	1	UI1	<del></del>	U 1		U 1	1	13/1	
408.5	32	11	1	- ŭ		24	11		111 1	31	-+i			U 1	<del></del>	Ü.	1	Ü			111		Uli		1111	1	(il t	1	Üİİ		11/3	1	Uli	
421.2	1			- il		1 1	11	<del></del>	0 1	2		+		Ŭ i	1		1	- 11	1		111		1111	<del></del>	1111	<del></del>	UIT	<del>-</del>	Hit		ŬH.		U 1	
429.4	1	111	1	U			11	<del></del>	U 1	1		+		Ŭ1	1	- 11	1	11	+	1	it:	1	U11	1	ŭH.	<del></del>	ŭl 1	<del></del>	ŭi i	1	UII	1	U 1	1 99
439.3	1	111		13			11	7	1	-		+		ŬH.	<del></del>		1 1		1	<del></del>	11:1		Ŭ		1111		Üİ		U 1		U 1	1	Ulf	101
462.2	1	111	- 1	- iii			ili i		11 1	2	1	<del> </del>		U 1	<del></del>	ŭ	1	- 11	11	1 1	11:1-		UH	1	Ū i	1	U 1		U 1	1	UII	1	U i	
460,2	1	- 511	<u>_</u>	10		1 0	ilil		ii i	1 2	- 1	1		ŭ i	1	Ü.	1	U	1	1	011		Ü	1	UIT	1	Üİ	1	Ü	1	UII	1	UIS	
470.1	1	Ü 1	1	U	11-	1 1	111	1	ü i	1 2	- 1			Uli	1	- U	1	U	1		Jii		UII	1	UI1	1	Uli	1	Ulil	1	U11	1	UII	100
481.7	1	U 1	1	Ü	11	1 1	111	- ;	UI 1	1 1	US 1	1		U 1	<del></del>	Ü	1 1	Ü	11	1 1	011	1	UII	1	Ulil	1	U 1	1	U 1	1	V 1	1	U 1	1 105
489.5	1	0/1	1	Ü		1	111	1	18 1	1 1	111 1	1		11/1	1	- 17	1 1	11	1		011	1	UII	1	UII	1	U 1	1	UII	1	U.1	1	U 1	101
499.5	1	011	1	17	1	1	īli i	1	11 1	1	11/1			Üİ	1	Ŭ.		ü	1		011	1	U 1	<del></del>	Ulil	1	ü i	1	Uli	1	Uli	1	U 1	
513.4	1	Ü	1	U	1	1	itit	1	1/ 1	1 1	U 1			üli		- 0	1 1	U			011	1	ülil	1	UII	-	Ú i	1	ülil	1	ülil	1	UIT	105



Client: Lecation: Project ID: SEI #: Date Sampled: Date Analyzed: Report Date: GTEOSI Hicksvilte, NY Groundwater Profiling 971867-R 95/07/2007-95/20/2007 95/07/2007-95/20/2007 5/25/2007

HOLE ID = P-112											_		
						VOC DATA	A, sgrt.						
	Virtal Chlori	de	<b>FOishtpros</b>	thene	p-Oxthoroet	finene	Institucethene			Letraphior cerbene			% 55
Death	Value	Q DF	Va	tue C DF	Value	Q OF	Value	Q 1	)F	Value	Q	0F	
75.2	1	UI	. 1	U 1	1	U 1	1	U	1	1	U	1	104
85.2	1	U I	1	UII	1	U 1	1	U	1	1	U	1	103
95.2	1	U 1	1	U 1	1	U 1	1		1	1	U	1	98
105,2	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	100
115,2	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	99
125.2	1	UI	1	U 1	1	U 1	1	U	1	1	U	1	101
135.2	1	U 1	1	U 1	1	U 1	1	u	1	1	U	1	99
142.8	1	U 1	1	U 1	1	U[1]	1	U	1	1	u	1	100
151,3	1	U 1	1	U 1	1	U 1	1	Ų	1	1	U	1	94
161.6	1	U 1	1	UII	1	U 1	6		1	7		1	97
170.2	1	U 1	1	U 1	1	U 1	7		1	6		1	100
179,6	1	U 1	1	U 1	1	UII	14		1	4		1	100
190,2	1	U 1	1	UI	1	UI	8	-	1	8	7	1	100
232,2	1	U 1	1	UII	1	U 1	17		1	86	7	1	101
240,2	1	U 1	1	U 1	6	1	33		1	120	_	1	105
250.2	1	U 1	1	U 1	1	U 1	4	_	1	20		1	102
258.4	1	Ut	1	U 1	1	U 1	2		1	2		1	100
300.3	1	Ut	1	U 1	1	U 1	1	U	1	1	U	1	98
305,1	1	UI	1	U 1	. 1	U 1	1	U	1	1	U	1	96
314.2	1	U 1	1	U 1	. 1	U 1	1	U	1	1	U	1	98
324.9	1	U 1	1	UII	1	U 1	1	U	1	1	U	1	94
336,7	1	U 1	1	U 1	1	U 1	1	U	1	1	υ	1	103
344.6	1	U 1	1	U 1	1	U 1	1	U	1	1	u	1	101
353,9	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	104
364.3	1	U 1	1	U 1	1	U 1	.1	U	1	1	U	1	101
374.2	. 1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	104
391.0	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	107
399,5	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	102
409,8	1	UII	1	Ut	1	U 1	1	U	1	1	U	1	103
426.0	1	U 1	1	U 1	. 1	U 1	1	U	1	1	U	1	102
427,1	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1	95
434.3	1	UII	1	UII	1	UI	1	u	1	1	u	1	99

		INORGANIC DATA, mg/L		
Fa":	Fe. Total	Ammonta	Chionde	Chlorine, Tota
NA	NA NA	NA NA	NA.	NA.
0.08	0.42	0,11	52	0.05
ND	0.37	ND	40	0.02
ND	0.28	ND	37	ND
0,03	0.17	ND ND	51	0.13
0,17	0,61	0.19	50	0,09
0,07	0,31	0.20	37	0,07
0,03	0,32	0.03	29	0.03
0.08	0.41	0.12	25	0.04
0.33	0.44	ND	150	0.04
0.71	1.47	0.20	103	0.37
0.34	0.60	0,16	64	0.09
0,23	0.35	ND	66	ND
0.05	0.18	0,07	23	0.05
0.04	0.11	ND	20	0.04
0.04	0.18	ND	44	, ND
ND	0.21	0.04	42	ND
NA.	NA NA	NA NA	NA.	NA.
ND	0.11	0.06	ND	ND ND
0.10	0.23	0,13	97	ND
0.05	0.20	0.11	173	0.09
0.05	0,14	0.05	171	ND
0.06	0,22	30.0	238	0.07
ND	0.16	0,03	212	0.03
0.16	0.26	0.22	227	80.0
NA	NA NA	NA NA	NA NA	NA NA
0.04	0.12	ND	361	ND.
0.10	0.24	0.10	317	0,04
0.29	0.63	0,52	254	ND
NA	NA NA	NA NA	NA NA	NA.
NA	NA NA	NA.	NA NA	NA NA
0.24	0.56	0.05	137	ND

		Freons, ug	A.				
Freco 119		Freon 123			Freen 123A		
Value	Q DF	Vatur	Q	DF	Value	a	Dé
1	U 1	1	U	1	1	υ	1
1	U 1	1	U	1	11	U	1
1	U 1	1	U	1	11	U	1
1	UI	1	U	1	1	U	1
1	UII	1	U	1	1	Ų	1
1	Ull	1	U	1	1	U	1
1	Uī	1	U	1	11	U	1
1	U 1	1	U	1	1	U	1
1	U 1	1	U	1	1	U	1
1	U 1	1	U	1	11	U	١
1	U 1	1	U	1	1	U	1
1	U 1	1	U	1	1	U	1
1	U 1	1	U	1	1	U	1
1	UI	1	U	1	1	Ü	1
1	UII	1	U	2	1	U	1
1	UI	1	u	1	1	U	1
1	U 1	1	U	1	1	U	1
1	U 1	1	U	1	1	U	
1	Ut	1	U	1	1	U	
1	U 1	1	U	1	3	U	7
1	Ul	1	U	1	1	U	1
1	UT	1	U	1	1	U	1
1	UII	1	U	1	1	U	
1	U	1	U	1	1	Ü	
1	Uit	1	Ü	1	1	U	1
1	Ut	1	U	1	1	Ü	
1	Uli	1	U	1	1	U	
1	U	1	U	11	1	U	h
1	U 1	1	U	1	1	U	1
1	Un	- 1	Ü	1	1	Ü	ŀ
1	Uli	1	U	1	1	U	h
<u> </u>	Uli	1	U	1	1	Ü	1

														VOC DAT	A, ug/L													
	1.1-Dichlorgethere	1.	1-Dichlorgethage	1.1.5-Trichford	sethar(g)	5.5.1.2-Tetrachic	erarifeore	Cartion Tetrac	stande	Benzera		1.2-Deretoros	gne	Toluene		Critoropegzene	Ethylbenz	6716	m.p./Kylene		g-Xyfene	1.3-	Dictionsbenzene	1.4-Oxtdorob	enzere	1,2-Dichlorobenzer	e %S	3
Depto		Q DF	Value Q DF	Value	Q DF		g pr	Value	g pr	Vafue	g DF	Value	Q OF		g of	Value Q DF		g DF		g DF			Value Q DF	Value	Q DF	Value	9 DF	
75,2	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U[1]	1	U[1]	1 U 1	1	U 1	1	U 1	1	UII	1 U 1	1	UII	1	U 1 10-	
85,2	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 01	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 10	
95,2	11	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 98	
105.2	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 01	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 100	,
115.2	1	U 1	1 0 1	1	U t	1	U 1	1	U 1	1	U 1	- 1	U 1	1	U 1	1 U 1	- 1	U 1	1	U 1	1	U 1	1 01	1	U 1	1	U 1 99	
125,2	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	11	U 1	1	U 1	1 U 1	1	U 1	1	U 1 10	
135.2	1	U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 99	
142,8		U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U[1] 10	
151,3		U 1	1 U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U[1]	1	UI	1	UII	1 U 1	1	U 1	1	U 1 94	
161,6		U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1		U 1	1 U 1	1	U 1	1	U 1 97	
170.2		UII	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	UII	1 U 1	1	U 1	1	U 1 10	
179.6		U 1]	1 U 1	1	11	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1		UI	1 U 1	1	U 1	1	U 1 10	
190.2		U 1	1 01	1	U 1	1	U 1	11	U 1	1	U 1	. 1	U 1	1	U 1	1 U 1	1	U 1	1	UII	1	U 1	1 01	1	U 1	1	U[1] 10	
232.2	2	1	1 01	2	1	1	U 1	2	11	1	U 1	1	U 1	1	UII	1 U 1	1	U 1	1	U 1	1	U 1	1 U1	. 1	U 1	1	U 1 10	
240,2	1	U 1	1 U1	1	U 1	1	UI	1	1	1	U 1	1	U 1	1	UII	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1		U 1 10	
250,2	1	U[1]	1 U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 10.	
258,4	1	U 1	1 U1	1	U 1	.1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	UIII 10	
300.3	1	U 1	1 U1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	UII	1 U 1	1	U 1		U 1 98	
305.1	11	U 1	1 U 1	1	UII	11	U 1	1	U 1	. 1	U 1	. 1	U[1]	1	U 1	1 U 1	1	υt	1	U 1	1	u 1	1 01	1	U 1	1	U 1 96	
314,2	11	U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	11	U 1	1	U 1	1 U 1	1	U 1	1	U 1 98	
324,9	1	U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	UII	1 U 1	1	U 1	1	U 1 94	
336.7	1	UII	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 10	
344.6	1	U 1	1 01	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 10	
353,9	111	U 1	1 U 1	. 1	UII	1	U 1	1	U) 1 ]	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	UII	1	U 1	1 01	1	U 1		U 1 10	
364.3	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 01	1	U 1		U 1 10	
374.2	1	U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1 10	
391,0		U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 01	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1		U 1 10	
399.5		U 1	1 U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U[1]	1	UII	1	U[1]	1 01	1	U 1		U 1 10	
409.8	1	U 1	1 U 1	1	UII	_11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	UII	1 U 1	1	U 1	1	U 1 10	
426.0	1	UII	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	UII	1 U 1	1	U 1		U 1 10	
427.1	1	U 1	1 01	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1		U 1 95	
434,3	1	U 1	1 U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	U 1	1	UII	1	UII	1 U 1	1	U 1	1	U 1 99	

Samples with 26th paid to May ICCs careful a from an authorise flew and will have detection feels of 26 ppc
305 - Compage Receivery

"Uniform the samples of the pacified reporting famil.
AD "Value below greater for in pacified reporting famil.
AD "Value below detection limit.
AA "Not Angles."



DRAFT

# bile Laboratory Results Sheet

GTEOSI Hicks ville, NY Groundwater Profiling 071867-R 05/29/2007-06/07/2007 05/29/2007-06/07/2007 it; ition: ict iD: i; Sampled: Analyzed; ort Date; 7/11/2007

OLE IO = P-113											
TOLE 10 = P-113											
1						VOC DATA, L	ıg/L				
1	Virys Chic		4-Distribution	thene	5-Dichloro	ethene.	Techlocouther	10	Tetrachiocoethen		% SS
Deoth	1	/alue C DF	Ve	Ave Q DF	Value	Q DF	Value	Q DF	Value	a DF	
74.6		U 1	1	U 1	1	U[1]	1	UII	6	- 11	100
84,9	1	U 1	1	UI	1	U 1	1	UI	2	1	82
94,7	1	U 1	. 1	U 1	1	U 1	1	U 1	2	1	101
104,6	1	U 1	. 1	U 1	1	UI	2	1	2	1	97
121.6	1	U 1	1	U 1	1	UI	1	U 1	1	U 1	107
129.9	111	U[1]	1	U 1	1	UII	1	U 1	1	UI	104
139,9	1	U 1	1	U 1	1	UI	1	U 1	1	U 1	106
149,9	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	99
159,9	1	U 1	1	U 1	. 1	UII	1	U 1	1	UI	100
168.4	1	U 1	1	U 1	2	1	12	1	2	1	101
179.5	1	U 1	1	U 1	14	1	180	10	10	1	105
187,9	1	U 1	1	U 1	1	U 1	6	. 1	1	U i	99
199.2	1	U 1	1	U 1	1	U 1	6	1	1	UI 1	99
209,3	1	U 1	1	U 1	1	UII	4	1	1	UII	100
219,9	1	U 1	1	UII	1	U 1	6	1	1	UI	100
229.9	1	U 1	1	U 1	1	U 1	6	1	1	U 1	95
239.4	1	U 1	1	U 1	1	U 1	2	1	1	U t	108
249.9	- 1	U 1	1	U 1	1	U 1	1	U 1	1	Ul 1	110
261.4	1	U 1	1	U 1	1	U 1	1	1	1	UI	104
269.7	1	U 1	1	U 1	1	UII	1	U 1	1	Ū1	104
281.4	1	U 1	1	U 1	1	U 1	1	U 1	1	U i	103
339,5	. 1	U 1	1	U 1	1	UII	1	U 1	1	UI	108
349,9	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	111
366.2	1	U 1	1	U 1	1	UII	1	U I	1	U 1	109
379,9	1	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	95

		INORGANIC DATA, mg/L		
Fe'-	Fe, Total	Аттисом	Chlonde	Chlorine, Tota
NA NA	NA NA	NA I	NA.	NA.
0.33	1,96	0.57	ND	0.17
0.32	0.51	0.42	ND	0.12
0.17	1.23	0.36	12	0.06
0.11	0.23	0.14	11	ND
0.34	0,55	0.12	22	ND
0.36	0.44	0.20	30	ND
0.29	0.37	0.14	29	0,02
0.29	0.34	0.09	35	ND
0,61	2.12	0.21	36	0.23
0,35	0,47	0.12	40	ND
0.14	0.90	0.26	67	0.07
0.22	0.46	0.24	48	0.02
ND	0.19	0.07	60	ND
0.49	0,81	0,35	31	0,04
9,09	0.23	0.08	28	ND
ND	0,15	0.03	95	0.03
0.25	0.30	0,05	231	ND
0.04	0.17	0.06	35	0,04
0.05	0.23	0.07	18	0.02
0.03	0.10	0.04	11	ND
ND	0.42	0.06	75	0.04
0.15	2,71	0.53	269	0.11
0.05	0.12	0.06	208	ND
ND	0,18	0.05	285	0.12

			Freons					
Frene 11	3		Freen 12			Ereon 123A		
Value	0.0	Œ	Value	_ a	D۴	Value	Q	D
1	U	īI.	1	U	1.	1	U	1
1	U	1	1	U	3	1	U	1
1	U	1	1	U	1	1	Ü	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	-	. 1	U	1
1	U	1	1	U	1	1	U	1
1		1	1	U	1	1	U	,
1		1	1	U	1	1	U	1
1		1	1	U	٤	1	U	1
1	U	1	1	U	1	1	Ü	ŀ
. 1	u	П	1	U	1	. 1	U	1
1	U	1	1	U	1	1	U	
1	U	1	1	υ	п	1	IJ	ī
1	U	1	1	U	1	1	Ų	1
1	U	1	1	U	1	. 1	U	1
1	u	1	1	U	,	1	U	ī
1	U	1	. 1	U	3	1	U	1
1	u	1	1	U	1	1	U	1
1	U	7	1	U	1	1	U	ī
1	U	1	1	Ü	1	1	u	1
1	U	1	1	U	1	1	U	1
1	U	1.	1	U	1	1	U	1
1	U	1	1	U	1	1	U	1

														VOC D	ATA, ug/L														
	1,1-Dichlaroe Value	DEGE O DE	1,1-Dichloroethane		Trichloroetha		1.1.2-Tetjach		Carbon Tegacrapude	Benzene		1.2-Dichlorothane		Totagge		Chloropetzene		Ethyspenzone		m.p.Xrlene	o-Xxiene		1.3-Dichlorobenz	ROP .	1,4-Dxddcobe	entene	1,2-Dishlor	anhenzen.	%88
ipth .	Value		Value Q (		/alue	Q DF	Value	Q 0F	Value Q DF	Value	Q DF	Value	Q DF	Value 9	2 DF	Value (	DF.	Value 0	DE	Value Q DF	Value	O DE	Value	Q DF	Value	G DF			
.6	11	U 1	1 U	1		UII	1	UI	1 U 1	1	U 1	1	UII	1	111	1	111	1	11	1 011	1	Ülil	1	Ulil	1	ÜİT	value 4	Ŭ(1	
9	1	U 1	1 U	1	1	UII	1	U 1	1 U 1	1	U 1	1	UIII		111	1 1	111	1 1	1 2	1 011	1	1111	<del></del>	UII					
7	1	U 1	1 U	1	1	UII	1	U 1	1 0 1	1	U 1	1	UII		111		/ 1	1 1	111	1 011		ŭ						U 1	
.6	1	U 1	1 U	1	1	U 1	1	U 1	1 U 1	1	UII	1	1111		111		11		Hil	1 011				U 1	!	0 7		U 1	
.6	. 1	U 1	1 U	1	1	UII	1	U 1	1 01	1	U 1	<del></del>	<del>ăli)</del> –		11		111		111-			U 1	1	U 1	1	0 1	1	U 1	
9	1	UII	1 U	1	1	UII	1	U 1	1 011	<del></del>	U 1		ul i		111	1	44			1 U 1		UII	1	U 1	1	UII	1	U 1	
.9	1	UII	1 U	1	1	UII	1	U 1	1 11	<del></del>	U 1		- 1		1111		+:+		11	1 U 1	11	U 1	1	U 1	11	U 1	1	U 1	
9	1	U 1	1 11	1	1	Uli	<del></del>	U 1	1 011				011				11		11	1 01	11	U 1	1	U 1	1	U 1	1	U 1	1
9	1	UI 1	1 11	1	<del></del>	UII		- Ŭ 1	1 01		U 1		UII		11	1 1	111		1 1	1 U 1	11	U 1	1	U 1	1	U 1		U 1	
4	1	1111		1	<u> </u>	iii ii		- U 1			U 1		UII		11		11		11	1 U 1	1	U 1	1	U 1	1	UII	1	U 1	1
5	4	-11		1	<del></del>	411		0 1	1 0 1		U 1	1	U 1		111		11		1 1	1 U 1	1	U 1	1	U 1	1	UII	1	U 1	1
9				-	<del></del>			9 1	1 0 1	1	U 1	11	U[1]	1 1	1 1	1 (	3 1		1 1	1 U 1	1	U 1	1	U 1	1	UII	1	UII	1
2		U 1				UI		U 1	1 01	11	U 1		UII		J 1	1 (	J 1	1 (	1 1	1 U 1	1	U 1	1	U 1	1	UII	1	U 1	
3	<del></del>			-		-11	1	U 1	1 U[1]	1	U 1	1	U 1	1 1	JI 1	1 (	J 1		1	1 U 1	1	UII	1	U 1	1	UII	1	U 1	
9		U 1		1	_1	UII	1	U 1	1 U 1	1	U 1	1	UII	1 (	J 1	1 1	11		1	1 U 1	1	UII	1	U 1	1	11 1	1	U 1	
9		Ü 1	13	11	1	11	. 1	U 1	1 U 1	1	U 1		U 1	1	11	1 1	/ 1	1 1	1	1 U 1	1	1111		U 1		- 1111		U 1	
	2	- 1	21	1	2	1	1	UII	1 01	1	U 1	1	UII	1 1	11	1 1	11		1	1 41		Üİİ	—- <del>:</del>	UI 1	<del></del>	- 31		U 1	
4	2	1	1	1	2	1	. 1	U 1	1 U 1	1	U 1	1	UII		11	1 (	11		11	1 01						- 0 1			
9	1	U[1]	1 U	1	1	UII	1	U 1	1 01	1	U 1	1	UI 1		111		11		11	1 011				UII	!	U 1		U 1	
4	1	U 1	1 U	1	1	UII	1	U 1	1 1111	1	U 1		11 1		111		11				1	0 1	1	U 1	1	U 1		U 1	
7	1	U 1	1 U	1	1	UII	1	U 1	1 0/1	<del>i</del>	U 1		UI1		11:1-				41	1 U 1		U 1	1	U 1	1	U 1	1	U 1	
4	1	U 1	1 U	1	1	U 1	1	U i	1 11	<del></del>	U 1	<del></del>					11		41	1 U 1	1	U[1	11	U 1	1	U 1	111	U 1	11 1
5	1	U 1	1 U	1	1	Üİ		U 1	1 01		U 1		911		41		J 1		11	1 U 1	1	UII	1	U 1	1	U 1	1	U 1	1
9	1	0 1	1 0	1	<u> </u>	U 1		U 1	1 011				UII		1 1		1 1		1 1	1 01	. 1	UI	1	U 1	1	U 1	1	U 1	1
	1	- 111		-	<del>-</del>	해뉴					U 1	1	UII		11	1 (	1 1	1 (	1	1 0[1]	1	U 1	1	U 1	1	UII	1	U 1	
-	<del></del>	- 011				UII	1	U 1	1 01	1	U 1	1	Ulti	1	J 1	1 (	41	1 L	11	1 U 1	1	UII	1	U 1	1	UII	1	U 1	

es with >100 pph total VOC's cannot be run or Surrogate Recovery Idetected below the specified reporting limit. 'alue below detection limit. (or Analyzed,



DRAFT

#### bile Laboratory Results Sheet

GTEOSI Hicksville, NY Groundwater Profiling 071867-R 7/11/2007-7/28/2007 7/11/2007-7/28/2007 8/9/2007 tt: rtion: sct (D: E. Sampled:
Analyzed:
>rt Date:

+OLE ID = P-114											
						OC DATA, 4	asi				
	Yeart Chiles	sde	t-Dichloroet	there	s-Dichloros		Trichtgroeth	were a	Tetrachtorgett	anne.	% SS
Death		Mue O DF	Va		Value	Q DF	Value	G DF	Value	Q DF	2/30
74.10	1	UIT	1	UII	2	111	10	111	1	UIT	107
84.75	1	UII	1	UI1	1	UI 1	2	11	1	U 1	109
94.75	1	UII	i	U 1	1	U 1	3	11	1	UII	114
104,75	1	U 1	1	U 1	1	UII	6	-11	1	U 1	106
114.55	1	UI1	1	UII	9	11	32	-11	12	11	104
124.75	1	UII	1	U 1	17	11	110	1	15		103
134,75	1	UII	1	U 1	78	1	380	11	35	1	112
143,80	1	U 1	1	U 1	78	1	400	11	26	1	119
161,50	5	1	1	U 1	140	11	970	5	22	1	100
169,70	9	1	1	U 1	110	5	630	5	18	1	109
179.10	10	1	1	U 1	240	1	850	5	14	11	105
193.80	14	1	1	U 1	220	4	690	4	6	1	105
203.85	7	1	1	U 1	110	24	710	24	24	1	99
213.80	1	UII	1	U 1	29	11	400	1	16	1	104
222,80	1	UII	1	UII	20	11	310	111	21	1	100
234,00	1	U 1	1	UII	13	1	230	1	13	1	101
244.40	1	U 1	1	U 1	11	1	84	1	7	1	103
271,90	1	UII	1	U 1	19	1	150	1	8	1	105
280,00	1	U 1	1	U 1	21	11	140	1	10	1	108
289,80	1	U 1	1	UI	22	1	77	1	4	1	107
298,25	1	U 1	1	U 1	22	1	98	1	4	1	108
309,80	1	U 1	1	U 1	5	11	25	11	2	11	111
319,80	1	U 1	1	U 1	1	U 1	4	1	1	U 1	98
329.00	1	UII	1	UII	1	U 1	1	U 1	1	U 1	110
340,15	1	UII	1	U 1	1	UII	1	U 1	1	UII	96
348.15	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	108
359,80	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	107
368,10	1	Uli	1	U 1	1	U 1	1	U 1	1	U 1	109
456.38	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	107
464.90	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	105
473,41	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	109
484.10	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	110
494.40	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	96
504.90	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	108
513.30	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	106
523.90	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	104

		INORGANIC DATA, mg/L		
Fo"	Fe. Total	Ammonia	Chlonde	Chlorine, Tut
0.44	0.58	0.06	94	ND
0.22	0.38	0,13	79	0.07
0.13	0.18	0.04	57	ND
0,18	0.33	0.05	45	ND
0.36	0.45	0.24	36	ND
0,27	0,36	0,08	38	ND
0.43	0.45	0.14	46	ND
0.78	0.78	0.05	45	ND
0.68	0.81	0.13	58	0.02
0,40	0.49	0.08	44	ND
0.41	0.52	0.42	53	NO
0.61	0.72	0.12	52	ND
0.33	1.30	0.25	52	0.0
0.64	0.66	0,05	49	ND
0.20	0.27	0.08	52	0,1
0.35	0.38	0.04	50	ND
0,42	0.47	0,06	60	ND
0,51	0.53	0.02	46	0,0
0.51	0.67	NO NO	40	ND
0.52	0.62	0.06	38	ND
0.58	0,50	ND	41	NE
0,39	0.34	ND	32	0,0
0.22	0,29	0,08	11	0,0
ND	0.03	ND	ND	ND
NA NA	NA NA	NA NA	NA NA	NA.
0.16	0,32	0.06	40	0.0
0.34	2.60	0,36	58	0.25
0.24	0,36	0,10	33	NE
0.14	0.16	0.03	316	NO.
0.04	0.15	0.06	349	NC
0.06	0.17	0.07	233	0.0
0.04	0.08	0.05	35	0,0
0.03	0.09	0.07	37	0,0
0.11	0.21	0,13	29	0,0
0.20	1.98	0.31	13	0.2
0.05	0.06	0.04	ND	0.0

				_				٦
			Freons					1
Etgon 113			Freen 123			Fleor 123A	_	
Value	q	-	Valore	Q		Value	Q	
2	_	1		U	5	1	U	1
1		1	1 1	U	2	1 1	U	1
1	U	1		С	1	1	U	1
1	Ü	1	11	U	1		U	1
10		1	1			1		1
2		1	1	U	1	1	U	1
4		1	1	U				
4		1	11	U	1	1	U	1
1	U	1	1	U			U	1
1	U	1	1	u	1	1	U	1
1	U	1	1	U	1	1	u	1
1	U	1	111	U	1	11	U	1
1	U	2	1	U	1	1	U	1
1	U	1	1	Ų	1	1	U	1
1		٦	1	U	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	υ	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	1	11	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	U	1	1	u	1
1	U	1	1	Ū	1	1	U	1
1	Ü	1	1	Ü	1	1	U	
1	U	1	1	U	1	1	u	1
1	Ü	1	1	Ü	1	1	U	1
1	U	,	1	U	1	1	U	1
1	U	2	1	Ü	1	1	U	1
1	U	1	1	U	1	1	U	1
1	U	1	1	Ü	1	1	U	1
1	U	ī	1	U	1	1	U	1
1	Ü	1	1	U	1	1	U	1
1	U	1	1	U	1	1	U	ī
1	U	1	1	U	1	1	U	11
1	U	1	1	Ü	1	1	U	1
		*		_	_			

																vac	DATA, ug/L													
- 1	1.1-Dichloroether		1.1-DisNorce		1.1.1-Trichtorget			etractionout		Carbon Tetrachione		Bonzene		1,2-Dichlorother	DSE.	Toluene		Chlorobenze	M192	Ethylbenzene		m.p-Xelene		g-Xylene	1.3-Dichlerskenzens	. 1.	4-Dictionobenzer		1.2-Dichtorobenzene	
Depth	Value	Q DF	Value	Q DF	Value	0.08	V#		Q DF		Q DF		Q DF	Value	G DF	Value	Q DF	Value	Q DF	Value	Q DF		O DF	Value Q DF		DF.		Q DF		DF
74.10	1	U 1	1	U 1	9	1	1		U 1	1	U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1		U 1	1 U 1		11	1	U 1		1 107
84.75	1	U 1	11	U 1	6	1	1 1		U 1		U[1]		UII	1	U[1]	1	U 1	1	U 1	1	U		U 1	1 U 1		1 1	1	UI		1 109
94.75	1	UII	1	U 1	3	1	1 1		U 1	1	U 1		U 1	1	UII	1	U 1	1	U 1	1	UI		U 1	1 U 1		1	1	UI		1 114
104,75	11	U 1	1	U 1	3	t	1		UI 1	1	U 1		0 1	1	U[1]	1	U 1	1	U 1	1	U 1	1 1	U 1	1 U 1	1 (	11		UII	1 1	1 1 106
114,55	22	1	3	- 1	2	1	1 1		U 1		U 1		U 1	1	U 1	1	Ü 1	1	U 1	1	UII		UI	1 U 1			11	U]1]		1 104
124,75	1	1	3	11	. 1	U 1	1_1		U 1		U 1		UI	1	U 1	1	U 1	1	U 1	1	U 1	1	UI	1 U 1		111		UII		1 103
134.75	3	_!!_	3	1	1	1	1		U 1		U 1		U 1	1	U 1	11	U 1	1	UII	1	U 1		U 1	1 U 1		111	1	UII	1 1	1 112
143,80	3	11	4	1	1	U 1			V 1	1	U 1		U 1	1	U 1	1	UI	1	U 1	1	UI		U 1	1 U 1		1 1	1	UI		1 119
161.50	3	11	4	- 1	11	U 1	1		UI 1	1	U		UII	11	UII	1	U 1	1	U 1	11	U 1	1	U 1	1 U 1		1 1	1	U 1	1 (	1 100
169,70	3	11	6	1	1	1	1 1		U 1		U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 1	UIII	1 U 1		1	1	UII		1 109
179,10	3		5	1	11	U t	1 1		U 1		U 1		UI	1	UII	1	U 1	1	U 1	11	U 1		Ú f	1 U 1		11	1	UII		1 105
193.80	4		11	1	1	1	1 1		U 1		U 1		UII	1	U 1	1	U 1	1	U 1	1	U 1		UI	1 U 1	1 1	1 1	1	UII		1 105
203,85	3	11	7	11	1	U 1			U 1		Uİ		U 1	1	UII	1	U 1	1	U 1	1	U		U 1	1 U 1		1 1	1	U 1		1 99
213,80	2	_11	7	1	1	U 1			UI		U 1	1	U 1	1	UII	1	U 1	11	U 1	. 1	U 1	1	U 1	1 U 1	1 1	1	1	U 1	1 1	1 104
222,80	3	_11_	3	1	1	U 1			U 1		U 1	11	11	1	U 1	1	U 1	1	U 1	1	UII	1 1	U[1]	1 U 1		11	1	UII		
234.00	2	1	2	1	1	U 1			U 1		U 1	1	U 1	1	UI	1	U 1	1	U 1	1	UI		U 1	1 U 1	1 1	1 1	1	U 1	1 (	1 101
244.40	11	UII	1	U 1	1	U 1			U 1		U 1		U 1	1	UII	1	UII	1	U 1	1	U 1		U 1	1 U 1	1 (	11	1	UII		1 103
271.90	3	11	17	1	2	1	1		U 1		Ü 1		U 1	1	UII	1	U 1	1	U 1	. 1	U 1		U 1	1 U[1		1 1	11	UII		1 105
280,00	10	11	20	1	8	1	1		U 1		UIT	1	U 1	1	U[1]	1	UII	1	U 1	. 1	UII		UII	1 0 1	1 1	J 1	1	UI		J 1 108
289.80	9	11	24	11	7	1			U 1		U 1	11	U 1	1	U 1	1	U 1	1	U 1	. 1	U 1		U 1	1 U 1		1 1	1	U 1		J 1 107
298,25	10	11	25	1	8	1			U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	. 1	U 1		U 1	1 U 1		JI		U1		1 108
309,80	1	UII	3	1	1	U 1			U 1	11	U 1	1	U 1	1	U 1	1	UII	_ 1	U 1	1	U 1		U 1	1 U 1		J 1	1	U 1		J 1 111
319.80	11	UII	11	UI	1	U 1			U 1		U 1	1	U 1	1	UII	1	U 1	1	U 1	. 1	U 1		UII	1 U 1	1	11	1	U 1		1 98
329.00	1	U 1	1	U 1	11	U 1			U 1		U 1	111	U 1	1	U 1	1	U 1	1	U/ 1	1	U 1		UII	1 U 1		11	1	U 1		1 110
340,15	11	U 1	1	U 1	1	U 1	1		UI		U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1		1	1	UII	1 1	1 96
348,15	1	U 1	1	U 1	1111	U 1			U 1		U 1	1	UI	1	U 1	1	U 1	1	U) 1	1	U 1		UII	1 U 1		3 1	1	U 1		J 1 108
359,80	1	UII	1	U 1	1	U 1			U 1		U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1		U 1	1 U 1		J 1	1	U 1		J 1 107
368.10	1	U 1	1	U 1	1	U			U 1		U 1	1	UI	1	U 1	1	UI	1	U 1	1	U 1		U 1	1 U 1		11	1	U 1		J 1 109
456.38	1	U 1	1	U 1	1	U 1			U 1	1	0 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1		UII	1 U 1		JI	1	UII		1 107
464.90	1	UII	1	U 1	. 1	U 1			UII	1	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1	11	1	U 1	11	J 1 105
473,41	1	UII	1	U 1	1	U 1			U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1		J 1	1	U 1		J 1 109
484,10	. 1	UII	1	U 1	1	U 1			U 1	1	U 1	1	UI	1	UII	1	U 1	1	U 1	1	U 1		UII	1 U 1		11	1	U 1		J 1 110
494.40	1	U 1	1	U 1	1	U 1	1		U 1	1	U 1	_ 1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1 1	11	1	U 1	1 1	J 1 96
504.90	1	U 1	1	U 1	1	U 1		1	U 1	1	UII	1	U 1	1	U I	1	U 1	1	U 1	1	U 1	1	U 1	1 U 1	1 1	11	1	U 1	1 5	J 1 108
513,30		U 1	1	U 1	11	U 1			U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1 U 1	1 1	111	1	UII	1 1	1 105
523.90	1	U 1	1	U 1	1	U 1			U 1	1	UII	1	Uli	1	UII	1	U 1	1	UII	1	u 1	1	Uli	1 U 1	1 1	111	1	UII	1 1	J 1 104

s with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb

a with Study per overal your scanned be run on Surrogate Recovery Selected below the specified reporting limit, due below detection limit. If Analyzed.



# STONE ENVIRONMENTAL INC

Mobile Laboratory Results Sheet

 Client:
 GTEOSI

 Location:
 Hicksville, NY

 Date Sampled:
 10/16/2007-11/16/2007

 Date Analyzed:
 10/16/2007-11/16/2007

HOLE ID = P-118					16	OC DA	**							
	Vinvi Chi	orida	t-Dichloros	athene	c-Dichloro	othorna	un.	Trichlorge	+hana		Tetrachloro			% S:
Depth	Value	Q DF	Value	Q DF	Value	Q		Value	Q	DF	Value	Q	DF	70.53
75,00	1	UIT	1	UIII	1	U	11	1	U	11	1	U		100
85,00	1	U 1	1	UII	1	U		1	u		1	Ü	1	123
98.00	1	U 1	1	U 11	1	U		1	U	11	1	U	11	122
105.00	1	UII	. 1	U 1	1	U		1	U		1	U		116
114,85	1	U 1	1	UII	1	U	11	1	U	11	1	U	1	125
125.00	1	0 1	1	U 1	1	Ü		1	U		1	Ü	1	129
135.00	1	U 1	1	U 1	1	U	1	1	Ü	1	1		1	113
157.85	1	U 1	1	U 1	1	U		1	Ų	1	1	U	1	115
165.00	1	U 1	1	U 1	1	U	11	1	U	1	1	U	1	111
175.00	1	UII	1	011	2		11	42		1	1		1	108
185,00	1	UI 1	1	U 1	1	U	11	1	U	11	1	U	71	111
195.00	1	U 1	1	U 1	1	U		1	Ü	11	1	Ü	11	115
204,15	1	U 1	1	UII	1	U	11	1	U		1	U	1	121
215.00	1	U 1	1	U 1	1	U		1	U		1	Ü	11	115
223.80	1	U 1	1	UII	1	Ü		1	Ü		1	Ü	11	106
233,38	1	U 1	1	UII	1	U	1	1	U	1	1	U	11	113
241,50	1	U 1	1	UII	1		1		U			Ü	11	115
252.15	1	U 1	1	UIII	1	U	1	1	u	1	1	U	11	108
259.60	1	U 1	1	UII	1	U		1	Ù		1	Ū	1	120
286,50	1	UIT	1	UIII	1	U	-11	1	U	11	7		1	113
294.35	1	UIT	1	UII	1	Ü	11	4	-	3	2		1	111
322.45	1	Ü 1	1	ulil	1	U		1	- ul	11	1	-	11	112
331.10	1	UII	1	Ulil	1		T	1	111	11	1	ut	1 1	114
340,00	1	U 1	1	Üİİ	1	Ü		1	Ū	1	1		11	118
350.00	1	U 1	1	011	1	Ü		1	Ū	11	1		1	109
361.55	1	Ü	1	Üİİ	1		11	1	Ū	1	5		11	105
370.00	1	ÜH	1	UII	1	U	1	3	-	11	4		11	103
380.00	1	UII	1	UII	1	Ü	1	2		1	1		31	110
389.85	1	UI 11	1	Ulit	-1-	Ü		21		11	4		11	116
401.50	1	U 1	1	Ü 1	1	Ü		22		1	4	-1	11	10
409,55	1	UII	1	U 1	1	Ü		36		1	7		1	10
418.70	1	UII	1	UII	1	Ü	1	49		1	13		1	10
426,40	1	U 1	1	ulil	2		1	150	-	1	59	_	11	106
441.70	1	UII	1	U 1	1		11	120	-	11	48		11	115
450.00	1	U 1	1	UIII	10		17	620		24	130	-	1	10
458.70	1	Ū 1	1	UIT	1		1	180		1	99		11	104
491.60	1	0 1	1	UII	1	U	1	160		1	120	_	11	10
501,00	1	U 1	1	Üİ	1		1	220		1	170		1	11
511.50	1	U 1	1	U 1	1		1	220		1	280		71	112
519.10	1	0111		UII	3		1	370	-	1	310	-	11	11
531,50	1	Üİ	1	U 1	2		1	230		1	280		1	10
537,40	1	UII	1	U 1	1	U	31	57		1 1	64		1	11
550,10	1	UII	1	U 1	1	υ		100		10	140		10	11
570,85	1	UII	1	UII	1	0	1	92		11	110		11	111
580.70	1	Üİİ	1	Üİİ	1	Ü		29		11	41		11	125

	IN	ORGANIC DATA, mg/L		
Fe'-	Fe, Total	Ammonia	Chioride	Chlorine, Total
0,26	0,56	0,15	56	0,08
0.21	0,61	0.17	44	ND
0.34	0.52	0,15	50	0,04
0.39	0,55	0,11	58	0.06
0.14	0.20	0,04	43	0,02
0,17	0,23	80,0	36	0,08
0,24	0.43	0.06	60	0,08
0.09	0.18	0,05	46	ND
0,21	0,58	0.15	42	0,13
0.17	0.36	0.07	31	ND
0,11	0,16	0.06	28	ND
0.45	0.54	0,11	29	ND
1,15	9,40	1.20	33	0,57
0.18	0.67	0.26	40	0.60
0.33	0.43	0.09	52	0.04
0,36	0.38	0,12	57	0.04
0,15	0,33	0.11	64	0,04
0,51	0.76	0,23	60	0,15
0,74	0.78	80.0	52	ND
0.15	0.22	0.07	39	0.05
2.00	2.07	0.14	32	ND ND
0,83	1.98	0.37	37	0.04
0,25	0.29	0,04	38	ND
0,35	0.35	0.02	45	ND
0.54	0,58	0.04	33	ND
0.14	0.16	0.09	45 55	ND
0.29	0.32	0,13		ND
0,23	0.25	0.15	50	ND
0,16	0,16	0,12	56	0,07
0,66	0.39	0.18	41	0.12
0.33	0.54 0.93	0,21	33 25	0,14
0.59		0.58		0.12
0.78	0,81	0.08	29	ND ND
ND 0.20	0.04 0.23	0,04 2,00	34 80	ND ND
0,61		0,12	69	
0.61	0.61 0.18	0,12	43	0,11 0.02
0.12	0.18	0.08	62	ND ND
0.04	0.05	0.04	49	ND ND
0.32	0.05	0.09	42	ND ND
0.06	0,10	0.09	47	0.05
0.09	0.10	0,09	25	ND
0.36	0.54	0.17	23	ND ND
0.67	2,03	0.21	20	0.15
0.04	0.23	0.07	16	0,15
0,04	0.23	0.01		0.15

Freen 1 Value	13 Q I	DF.	Freons Freon 13 Value	23 0	DF	Freen 12 Value	3A	DF
1	UI	11	1	Ü	11	1	III	1
	-ŭl	ᆟ	<del>i</del>	ŭ	Ť	<del>i</del>	ŭ	Ť
1	-ŭ	1	<del></del>	ŭ	Ť	<del>-</del>	~ŭl	Ť
<del></del>	−ŭ†	il		ŭ	Ť	<del>-</del>	-ŭi	i
<del></del>	- 01	1		Ü	1	<del></del>	ŭ	Ť
<del></del>	- 51	Ħ		Ŭ	1	-i-	ŭ	1
<u> </u>	61	÷		<del>- ŭ</del>	1		-ŭ	1
	<del>- ŭl</del>	il		-ŭ	Ť	<del>-</del>	ŭ	1
	<del>ŏl</del>	H		-6	1		- Ŭ	1
	-ŭl	Ħ		Ü	H	<del>- i</del> -	-ŭ	1
<del></del>	-6	H		-6	1	<del></del>	- ŭ	ŕ
<del></del>	61	H	_		H	1	Ü	H
	-#	÷		6	÷	<del></del>		÷
<del></del>	- <del>ĭ</del> l	1		ŭ	H		-6	+
	1	t		- ŭ	1	+	ŭ	+
<del> </del>	-#	t		-11	÷		Ü	H
1	ᆔ	÷		- ŏ	+		ŭ	÷
<del></del>	🎳	1		<del>U</del>	÷	<del>-</del>	-6	÷
<del>                                     </del>	- 6	H		- 0	+		- <del>ŭ</del>	÷
<del></del>	6	1		ŭ	÷	<del></del>	-8	1
-	-#	+		-6	÷		6	1
<del></del>		╗		Ü	н	<del></del>	-#	H
1-1-	-61	+			H	+	<del>U</del>	+
<del></del> -	-8	+		U	1			H
1	- 8	÷		Ü	+	1	- 6	H
<del>                                     </del>	- 11	+		- ŭ	1		6	H
<del></del>	-#	+		-0	+	<del></del>	-11	H
<del></del>	해	1		U	1	1	- U	H
<del>                                     </del>	- 0	1	<del></del>	<del>-</del>	+	<del> </del>		H
<del></del>	- 6	1		-5	H		-17	H
<del></del>	- 8	+		∺	+	1	0	1
1-1-	빙	1			1		- 11	H
1 3		+		-6	+	1	ᆔ	1
1 -1		1		-6	+		5	1
11		1		∺	H		<del>-</del>	1
<del></del>		+		ᆢ	+	<del>                                     </del>	-6	t
<del></del>		1	1	Ü	1		- 0	H
1 2	-	1	1	- 11	+	1	-0	+
1		1	1-	- 0	H	<del></del>	- 6	1
		1	<del>                                     </del>	- 0	1		ᆢ	1
5 2		1		-8	1		-6	1
			1-				-	
	U	1		U	1	1	ᇻ	1
	U	1		Ų	1	1	ᆢ	1
1		1		U	1	1		
	0	1	1	U	1		U	1

Depth	1,1-Dichloroethene Value Q DF	1,1-Dichlorgethane Value Q D	111	-Trichloroethane Value Q DF	1.1.2-Tet	trachloroetha	n Carbon To	trachloride Q DF	Benzene Value Q D	_ 1.24	Dichlorathan		VOC DAT. Tokuene Value Q (		Chlorobenzene Value O DF	Ethylbenzene Value O DF	m.p-Xylene Value Q	o-Xy DF Value	lene O Di	1.3-Dichlerobenzene F Value Q DF	1.4-Dichlorobenzene Value Q DF	1.2-Dichlorobe Value	Q DF	%SS
75.0	1 0111	1 UI		1 011		ul -		ÜITI	1 UI			111	1 U		1 U 1				<del>ਹ</del> ੀ ਹੈ				UIII	100
85.0	<del>                                      </del>	1 0			+	— <del>II</del>			1 0	-					1 011	1 01							1111	123
98,0	1 011	51		4 614	+	- 8		U 1	1 0	11-		1	1 0		1 011	1 011			U 1	1 1 011			DI II	122
105.0	1 1 111	1 0		4 - 111	+			- 011	1 0			111	- <del></del>		1 011	1 111			- VIII	1 011			ᅢ	116
114.9	1 1 11	1 5			+	- ŭ		- <del>511</del> 1	1 0			+++-	1 0		1 011				U 1		1 011		비	125
125,0	1 1 11	1 0			+	ŭ		- 61+1	1 0			111	1 0		1 011		1 0		- U 1		1 011	<del></del>	비	129
135.0	1 1 111	1 0		1 1111	+	- 11		비비	1 0			111-	1 0		1 011		1 0		- U 1		<del>                                     </del>	1	Ŭ i	113
157.9	1 1 ŭi i	1 - ŭ		1 111	+ +	<del></del>		- ŭl i l	1 0			<del>lil -</del>	1 0		1 011				U i		1 011		ŭii	115
165.0	1 011	1 0		1 111	+	ŭl.		- ŭi i i	1 0			111	<del>-i - il</del>		- <del>i - ŭli</del>				Üİ		1 01		ŭH	111
175.0	† - i - i i i			1 011	+	ŭl-		<del>- ĭ[   </del>	1 0			<del>      -  </del>	<del>+ 1</del>		i üli				- ŏt i		i ŭli	<del></del>	ŭ	108
185.0	t i ŭli	1 0		<del>- i - i i</del> i		- ŭt		- ŭi i i	<del>- i - ŭl</del>			1:1-	1 0		1 011	1 011		11 1	- ŭli		1 011		Ŭ i	111
195.0	1 1 011	i ŭ	<del>il -</del> -	1 011	+-+	ŭ		- ŭ i				11-	1 0		1 01			11 1	ul i		i ŭi		ŭ	115
204.2	1 1 011	1 0	<del>i</del> +	1 01	1			- <del>Ŭ 1</del>	<del>- i - ii</del>		i ŭ		i ŭ		<del>- i - ŭli</del>	1 011		11-1	<del>U</del> 1		1 011		ŭ	121
215.0	1 011	1 0		1 1111	<del></del>	Ŭ.		ŭ i	1 0			11	1 0		1 011	1 011		11 1	Ŭ i	i ŭli	1 01		Ŭ i	115
223.8	1 - ŭH	1 01	+	1 011	+			- ŭi i i	1 0			111	1 0		1 011	1 011		11 1	ŭ i	1 1 011	1 011		ŭH	105
233.4	1 011	i ül		1 01	1	ŭ		ŏtil	1 0			tit	- <del>i - ŭ</del> t		1 011	i üli			- ŭi i		1 011		ũlil	113
241.5	1 011	1 0		1 01	1	ŭ		- ŭi i i	1 0			111	1 U		1 01	1 01			Ū i		1 011	1	UII	115
252,2	1 01	1 0		1 1111	1	ū		Üİİ	1 0	1	1 11	111	1 U		1 U 1	1 U 1			ul 1		1 011	1	UII	108
259.6	1 011	i Ü		1 011	1	Ü.		<u> </u>	1 01			111	1 U		1 011	1 011			- Oli		1 011	1	Üİİ	120
286.5	1 011	1	1	1 1111	1	- ū	1	Üİİ	1 11	1	1 11	11	1 0		1 01	1 01	1 0	1 1	Ü	1 01	1 01	1	UH	113
294.4	1 011	1 0	1	1 011	1	(1)		ŬĦ	1 11	<del>il</del>	1 1	11	i ŭ		i ŭli	i ŭii		11 1	- üti		1 011	1	Ulil	111
322.5	1 011	i Ü	1	1 011	1	ül	1	ÜH	1 0	1	1 11	111	1 0		1 01			11 1	Ū i	1 011	1 011	1	UII	112
331.1	1 011	1 0	1	1 01	1	Ü	1	UI 1	1 1/1	1	1 U	11	1 0		1 U 1	1 01	1 U	1 1	U 1	1 01	1 U 1	1	UII	114
340.0	1 011	1 U		1 U I	1	Ü		Üİİ	1 U	1		11	1 0	1	1 011			11 1	Ū i	1 01	1 011	1	Uli	118
350.0	1 011	1 0		1 011	1	Ü	1	Üİİ	1 0	11	1 Ü	11	1 0	1	1 UI1	1 U I	1 U	1 1	U 1	1 01	1 U 1	1	UII	109
361.6	1 011	1 0	1	1 011	1	- 0	1	U 1	1 0	1	1 0	11	1 0	1	1 UII	1 01	1 U	11 1	UII	1 U 1	1 01	1	UII	109
370,0	1 01	1 0	1	1 01	1	u	1	Ul 1 t	T U	11	1 0	111	1 0	11	1 011	1 011	1 0	11 1	U	1 01	1 01		UT	102
380.0	1 U 1	1 0	11	1 01	1 1	U	1	U 1	1 U	1		111	1 U		1 U 1	1 U 1		1 1	U 1		1 U 1		UII	110
389,9	1 0/1	1 U	11	1 1	1 1	U	2	11	1 0	1	1 U	11	1 U	1	1 U 1	1 U 1	1 U	1 1	U 1	1 U 1	1 0 1	1	U 1	116
401.5	3 1	1 U	1	2 1	1	U	5	1	1 U	1	1 0	1	1 U	1	1 U 1	1 U 1	1 U	1 1	U 1	1 01	1 U 1		U 1	101
409,6	3 1	1 U		2 1	1	U		1	1 U	1		1	1 U	11	1 V 1	1 U 1		11	0 1		1 U 1		U 1	107
418.7	3 1	1 U		3 1	1	U		11	1 0	1		1	1 0		1 U 1	1 0 1		111	U 1		1 U 1		Ull	105
426,4	26 1			17	1 1	U		11				111	1 0	1.	1 01			11 _ 1	U] i				UII	106
441.7	17 1	1 U		14 1	1 1	U		11		1		111	1 U		1 U 1	1 U 1		1 1	U 1	1 0 1	1 U 1		U 1	110
450.0	40 1	1 U		27 1	1 1	U		24		1		1	1 U		1 U 1	1 U 1		1 1	U 1	1 0 1	1 U 1		UII	104
458.7	33 1			20	1	U		1				1 1	1 U		1 U 1	1 0 1		1 1	Ü 1		1 U 1		U 1	104
491.6	35 1	1 U		23 1	1	U		11	1U			1	1 U		1 01	1 01		1 1	U 1		1 U 1		UII	105
501.0	28 1			22	1	U		1				1	1 U		1 U 1	1 0 1		11 1	U		1 U 1		U 1	111
511.5	42 1	1 U		32	1 1	U		. 1				1	1 U		1 U 1	1 U 1		1 1	U 1				UII	112
519,1	22 1	1 0		18 1	1 1	U		1				11	1 U		1 U 1			1 1	U 1		1 U 1		U 1	113
531.5	37 1	1 U		24	1 1	U		11				11	1 0		1 0 1	1 U 1		1 1	U 1		1 U 1		UII	109
537,4	9 1	1 U		7	1 1	U	1 9	11			1 U	1	1 U		1 U 1	1 U 1		1 1	U 1		1 0 1		UII	112
550,1	10 1	1 U		7	1	U		1	1 U	1	1 0	11	1 U	1	1 01	1 U 1	1 U	1 1	UII	1 01	1 01	1	UII	112
570.9	10 1	1 0		7	1 1	U		11	1 U	11		1	1 U	1	1 01	1 U 1		1 1	U	1 01	1 U 1	1	U 1	110
580,7	4 1	1 U	1	3	1 1	U	1 4	11	1 0	11	1 0	111	1 Ü	11	1 011	1 01	1 0	11 1	Ü	1 1 11	1 011	1	UI 1	125

STONE ENVIRONMENTAL INC

DRAFT

#### bile Laboratory Results Sheet

GTEOSI Hicksville, NY Groundwater Profiling 971867-R 3/31/2009-4/16/2009 3/31/2009-4/16/2009 5/22/2009 tion: ct (D: Sampled; Analyzed; (1 Date:

E ID = P-119												
					١	OC DATA, ug	VL.					
	Vinyi Ch	londe	t-Dichloros		c-Dschlarget	here	Trichtoroeti	HITO	Tetrachlorge	thene		% SS
Depth		Value Q DF	V	Nue Q DF	Value	Q DF	Value	Q DF	Value	G D	P	
64,95	1	UII	1	U 1	1	UI	1	UII	1	U 1	Т	89
72.85	1	U1	1	U 1	- 1	U 1	_ 1	U 1	1	U 1		89
84,95	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	Т	87
94.95	1	UII	1	Ú 1	. 1	U 1	1	U 1	1	U 1	Т	97
104.95	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	T	85
114,45	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1		93
124.85	1	UII	1	UII	1	U 1	1	U 1	1	U 1		93
133,45	1	U 1	1	UII	1	U 1	1	U 1	1	U 1		83
144,95	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	T	84
154,95	1	U 1	1	U 1	1	U 1	_6	1	3	1		98
164.95	1	U 1	1	U 1	1	U 1	2	1	4	1		95
174.95	11	U 1	1	U 1	1	U 1	1	11	5	1		89
184.95	1	년 1	1	U 1	_1_	U 1	1	U 1	3	1		89
194.95	1	U 1	1	U 1	1	U 1	1	UI	5	1		86
204.50	1	U 1	1	U 1	1	UI	1	UII	20			88
217.80	1	U 1	- 1	U 1	1	U 1	25	1	200			95
224.80	1	U 1	1	U 1	1	U 1	34	1	1300	1	0	91
234.80	1111	U 1	. 1	U 1	1	U t	1	U[1]	13	1	П	80
244.25	1	U 1	1	U 1	1	U 1	1	U 1	18			86
254,30	11	Ut	1	U 1	11	U 1	1	U 1	33			91
263.00		U 1	1	U 1	. 1	U 1	2	1	66			88
285,00	1	U 1	1	U 1	1	U 1	1	1	16	1		101
294.70	1	U 1	1	U 1	1	U 1	1	U 1	18			99
304.25	1	U 1	1	U 1	1	U 1	1	UII	3	1		97
324,80	1	U 1	1	UI	1	U 1	11	U 1	2		u.	101
347.00	1	U 1	1	U 1	1	U 1	1	UI	2			94
354.95	1	U 1	1	U 1	1	U 1	1	U 1	1		4	92
364.95	1	0 1	1	U 1	1	U 1	1	U 1	1	U		89
373.90	1	U 1	1	Ų 1	1	U 1	1	U 1	1	U.		97
386.80	1	U 1	1	U 1	1	U 1	1	U 1	44	U		95
388,15	1	U 1	1	U 1	1	U 1	1	U 1	3		1	104
397.10	1	U 1	1	U 1	1	U 1	1	U 1	1	U		100
408.30	1	1111	1	UI 1	1	16 1	1	11(1)	1	111	1 1	94

		INORGANIC DATA, mg/L		
Fe':	Fe. Total	Ammonia	Chlonde	Ghjorne, Tota
NA.	NA NA	NA .	NA	NA.
NA	NA NA	NA NA	NA	NA.
0.53	1.04	0.27	141	0.41
0.29	0.57	0,70	22	0,03
0.24	0.97	0.58	125	0.04
0.62	1.21	0.24	102	0.05
0.53	0.59	2.4	143	0.05
0,14	0.30	0.04	97	0.02
0.30	0.36	0,80	163	ND
0,59	0.82	8.0	81	0,02
1.05	1,96	0,14	20	0,03
0.44	1,41	0.06	17	0.05
NA .	NA NA	NA NA	NA NA	NA NA
NA .	NA NA	0.22	NA NA	NA.
0.16	0.16	0,13	42	0,03
NA.	NA NA	80.0	NA NA	NA.
0.33	1,00	0,23	15	ND
0.45	1,13	ND	17	0.03
0.38	0.66	0,14	17	0,17
ND	ND	0,04	16	ND
0.93	0.99	0,05	19	ND
0.16	0.24	0.02	22	ND
0.22	0.38	0,19	17	ND
0.11	0.15	0.02	27	ND
0.09	0.48	0.28	127	0.03
0,15	0.21	0.10	156	0,04
0.18	0.28	0.03	117	ND
0.16	0.32	0.28	67	0,10
0.16	0.17	0.03	12	ND
0.26	0.64	0.13	26	0.02
0.20	0,47	0,07	22	0.02
0,11	0,19	0.09	18	0.03
0.14	0.34	0.12	19	0.04

		Freons				
Freon 113		Freon 123		Ereco, 123A		
Value	CI CIF	Value C	04	Value	0	Df
1	U 1	1 1	1 4	1	U	1
1	U 1	1 (	Jί	1 .	U	1
1	U 1	1 (	1	1	U	1
1	U 1	1 1	1	1	U	3
1	U 1	1 1		1	U	1
	UT	1 (	1 3	1	U	1
1	UI	1 (	J i	1	Ų	1
1	UΤ	1 (	1	1	U	1
	U 1	1 l		1	U	1
1	U 1	1 (	1 3	1	U	1
	U i		1	1	U	1
1	U 1	1 (	1 1		ΰ	1
1	U 1	1 1	1 1	1	υ	1
1	U 1	1 1	1 1	1	υ	1
	U 1		1	11	U	11
	U 1	1 1		1	Ü	1
	U 1	1	1 1	1	U	1
1	U 1		J (		U	1
	U 1		J 1		U	
	UI		1 1		U	1
	UI		1 1		U	
	U 1	1 (			IJ	1
1	U 1	1 1			U	1
	U 1		1 1		U	1
1	U 1	1 1	3 1	1	U	1
1	U 1	1 1	1 1	1	U	1
	UI		1 1		U	
	U 1		11:		U	
	U 1		Jį,		U	
1	U 1		١,		υ	
1	U i		1		U	
1	U 1		J		U	
1	U 1	1	J 1	1	U	1
1	U[ ]	<u> </u>	41.	1 1		T,

								~							VO	C DATA, ug															
	1,1-Dichlospethen		1_1-Dichloroethane		1,1,1-Tachlotoema	na 1	.1.1.2-Tetrach	inreath tea	Carbon Tetraci	Innika.	Elenzena		1.2-Dichlaroth	200	Toluene		Chlorobenze	No.	En. o	benzene	m.p-Xvler		g-Xviene		1,3-Dichlorobesze		4.Dichlorober	0.100.0	1,2-Dichlorober	rana	%S5
Directo		Q DF		DF DF		Q DF	Value	Q DE	Value	Q DF	Value	Q DE	Value	O DF	Value	O DE	Value	O DE			Value	O DE	Value	o De		0.06	Value	g ne	Value	Q DF	
64.95	1	UII	1	JIII	1	UII	1	UII	1	ul 1	1	UI1	1	ÜİI	1	UltI	1	Ülil		U 1	1	Ülil	1	U[1]		ÜİI	1	Ülil	1	ülil	89
72,85	1	U 1	1 (	111	1	UII	1	U 1	1	U 1	1	U 1	1	UII	1	UII	1	UII	- 1	U 1	1	Uli	1	UII	1	UII	1	UII	1	UII	89
84.95	1	UI	1 1	U 1	1	UII	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	UII	1	U 1	1	U 1	87
94,95	1	UII	1 (	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	97
104.95	3	1	4	1	6	1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	UII	85
114.45	1	U 1	1 1	U 1	1	. 1	1	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	UII	93
124,85	4	1	6	11	10	1	1	UI	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	UII	93
133.45	1	11	3	11	3	1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	83
144.95	4	1	6	1	9	1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	Ü 1	1	U 1	84
154,95	2	1	1 1	U 1	3	1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	. 1	U[1]	98
164.95		U 1	1 1	U 1	1	UI	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	95
174.95		UI	1 1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U[1]	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	UII	89
184,95		U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U[1]	1	U 1	1	UII	89
194.95		UII	1 1	UII	11	UII	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UI	86
204.50		UII	1 !	U 1	1	U 1	1	U 1	. 1	UII	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	. 1	U 1	1	U 1	88
217.80		UI		U 1	1	U 1	1	U 1	1	1	11	U 1	1	U 1	. 1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	95
224.80		UII		U 1	3	U 1	1	U 1	2	11	111	U 1	1	U 1	1	UII	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	UII	1	UII	91
234,80		UI		U 1		UII	1	U 1	1	U 1	1	U 1	1	UII	1	UII	1	U 1		U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	80
244.25		U 1		U 1	11	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U	11	U[1]	86
254.30		U 1		U 1	11	UII	- 1	U 1	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	UI	1	U 1	1	U 1	1	U 1	1	UII	91
263.00		U 1		UII	11	U 1	1	U 1	1	U 1	11	U 1		U 1	1	U 1	1	U 1	1	U 1	11	UI	1	U 1		U 1	1	U 1		U[1]	88
285,00		U 1		u 1	11	U 1	1	UII	1	U 1	11	U 1	1	U 1	1	UII	1	U 1	1	U 1	11	U 1	1	U 1		UII	1	U 1	1	U 1	101
294.70		U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	Ut	1	U 1	1	U 1	11	U 1	1	U 1		U 1	1	U 1	11	U 1	99
304,25		UII		U 1	1	U 1	1	U 1	1	UI	11	UI	1	U 1	1	U 1	1	UI	1	U 1	11	U 1	1	U 1		U 1	1	U 1	11	U 1	97
324.80		U 1		U 1	1	UII	1	U 1	1	U 1	11	U1	1	U 1	1	UII	1	U 1	1	U 1	11	U 1	1	Ull	1	UII	1	U 1	1	UII	101
347,00		UI		UII	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	94
354.95	1	UII		U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	UI	1	UI	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	92
364.95	1	UI		U 1	1	UII	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	89
373,90	11	UII		UII	1	UI	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	97
386,80		U 1		UII	1	U 1	1	U 1	1	U 1	1	U 1	1	UI	1	U 1	1	U 1	1	U 1		U 1	1	U 1	11	UII	1	UI	1	U 1	95
388.15		UI		U 1	11	UII	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	104
397.10		U 1		U 1	1	U[1]	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	100
408.30	1	U 1	1	U[1]	11	UI	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	1	UII	1	U 1	94

es with 740 ppb finial VOC's cannot be run on a carbosen fiber and will have detection limits of 20 ppb Surreguler Recovery ofersced sellow the specified reporting limit. Immetral value for the period selection limit. (in Sampled for Analyzed due to multicensi Earnpia Volume

DRAFT STONE ENVIRONMENTAL INC

ile Laboratory Results Sheet

GTEOSI Hicksville, NY Groundwater Profiling 071887-R 4/17/2009-5/13/2009 4/18/2009-5/13/2009 5/22/2009 i ion: :1 ID: iampled: \unalyzed: 1 Date:

OLE ID = P-120						
			VOC DATA	L suell		
1	Vmyl Chloride	1-Dichloroethene	c-Dichloroethene	Inchkroathane	Tetracolorgethone	% SS
Depth	Value Q DF	Value C DF	Value G DF			DF.
74,90	1 (11)	1 0/1/	1 UI1	1 1 0	1 1 U	1 108
84,85	1 01	1 01	1 U 1	1 0	1 1 U	1 107
94.75	1 01	1 U1	1 U 1	1 0	1 1 U	1 102
103,50	1 01	1 01	1 U 1	1 U	1 1 U	1 110
114,30	1 U 1	1 U 1	1 U 1	1 U	1 1 0	1 118
125.00	1 U 1	1 U 1	1 U 1	1 U	1 1 U	1 118
143,20	1 011	1 01	1 U 1	1 U	1 1 U	1 106
154,70	1 01	1 U 1	1 U 1	1 U	1 1 U	1 96
165,00	1 U 1	1 01	1 U 1	1 U	1 1 U	1 106
172,35	1 U 1	1 01	1 U 1	1 U	1 1 U	1 105
192,10	1 01	1 01	1 U 1	1 U	1 1 U	1 106
200,00	1 U 1	1 U 1	1 U 1	1 U	1 1 U	1 101
210.20	1 U 1	1 01	1 U 1	1 U	1 1 U	1 110
220.00	1 U 1	1 U 1	1 U 1	2	1 10	1 105
230,00	1 U 1	1 01	1 U 1	3	1 77	1 103
239,30	1 U 1	1 U 1	1 U 1	12	1 93	1 101
253,05	1 U 1	1 U 1	5 1	30	1 44	1 103
263,50	1 U 1	1 U[1]	7 1		1 55	1 102
326.65	1 U 1	1 U 1	8 1		10 270	10 115
335.00	1 U 1	1 U 1	12 1	890	10 320	10 111
345,00	1 U 1	1 U 1	8 1		10 1120	10 108
361,50	1 U 1	1 U[1]	14 1		10 2400	10 104
369,00	1 U 1	1 U 1	21 1		10 830	10 108
381.70	1 U 1	1 U 1	36 1		10 1500	10 110
389.20	1 41	1 U 1	24 1		1 820	10 111
404.05	1 01	1 01	3 1	6	1 960	10 107
417.35	1 U 1	1 U 1	1 U 1		1 140	1 119
424.80	1 U 1	1 01	1 U 1		1 23	1 105
434.50	1 U 1	1 01	1 U 1		1 20	1 106
444.80	1 U 1	1 U 1	1 0 1		1 95	1 102
463.40	1 U 1	1 01	1 01			1 101
471,95	1 U 1	1 U 1	1 U 1		1 1 U	
481,25	1 01	1 0 1	1 U 1	1 U	1 1 U	1 106

		INORGANIC DATA, mg/L		
Fe'-	Pe. Total	Ammonia	Chkride	Charine, Tot
0,28	0.71	0.13	57	0.02
0,63	0.84	0,40	51	0,20
0.57	0.73	0.36	47	0.07
0.37	0.44	0.31	54	0.09
0,31	0.61	0,26	44	0.04
0,41	2.87	0.90	47	0,27
0.34	0,85	0,17	109	0,06
0.38	0.62	0.26	117	0.12
0,22	0.45	0,22	67	0.05
0,15	0,35	0,24	55	0,04
0.10	0.10	0.09	135	ND
0.15	0.20	0.04	54	ND
0.07	0.15	0.15	39	0.03
0.34	0.39	0.06	72	ND
0.32	0.63	0.16	63	0,03
0.46	0.94	0.39	35	0.14
0.24	0.27	0.14	29	0.02
0.21	0,43	0.12	21	0.02
0.25	0,71	0,14	27	0.04
0.70	0.92	0.23	30	0.15
0.41	0.44	0.18	23	ND
0.14	0.17	0.05	22	0.03
0,12	0.15	0,06	21	ND
0.12	0.12	0,09	23	ND
0.17	0.17	0.05	15	ND
0.07	0.23	0,11	58	0.02
0.65	12,50	0.28	43	0.29
0.10	0.14	0,04	40	OM D
0.17	0.19	0.07	41	0.06
0.30	0.30	0.15	17	0.08
0.11	0.20	0.06	14	ND ND
0,31	0,38	0.23	46	0,07
NA	NA.	NA NA	NA.	NA.

			Freons					
Fregn 1	3		Eseen.123			Freen 123A		
Value	Q	Df"	Value	9		Value	Q	
1	U	1	1	U	1	1	U	1
1		1	1_	U	1	1	Ų	1
1		1	1	U	1	11	U	1
1	U	1	1	U	1	11	U	5
1	U	1	. 1	U	1	1	U	1
1	Ü	1	1	U	1	1	U	1
1	U	1	1	U	1	11	U	1
1	U	1	1	U	1	1	U	
1	υ	i L	1	U	3	11	U	1
1	U	1	1	υ	1	1	U	1
1	U	1	. 1	u	1	1	U	1
1	U	1	1	U	1	1	Ų	1
1	U	1	1	U		11	Ú	3
1	U	1	1	U	1	11	U	1
111	Ü	1	1	Ü	1	1	U	1
1	U	1	1	U	1	11	υ	3
1	U	1	1	Ų	1	1	U	1
1	U	1	1	U	1	11	U	1
7		1	11	U	1	1	Ų	1
12		1	1	U	1	11	U	1
8		1	1	U	1	11	Ų	1
2		1	1	U	1	11	U	1
1	U	1	1	U	1	11	U	3
1	U		1	U	1	11	U	
1	U		1	U	1	1	U	1
1	U	1	1	Ü	1	1	U	1
1	U	1	1	U	1	1	U	Ŀ
_1	U	1	1	Ų	1	11	U	
1	U	1	1	υ	1	1	U	
1	U	1	1	U	2	1	U	
1	U	1	1	U	1	1	Ú	
. 1	U	1	1	U	1	11	U	
1	U	1	1	U	1	1	u	r

																ATA, ugil															
_	1.1-Dichloroethen		1,1-Dichloroeth		1.1.1-Tochlosse		1,1,1,2-Teba		Carbon Tets		Benzene		1,2-Dichlorotha		Totalette		Chkrobenzene		Ethylbenzene		m.p.Xylene		o-Xviene		1.3-Dichlorobenze		1.4-Diction		1.2-Dishloroben		%S5
Depth	Value	Q DF	Value	UIII	Value	Q DF			Value	Q DF	Value	Q DF	Value	Q DF		Q DF		O DF		DF				g DF	Volue	Q DF	Value	Q DF	Value	G DF	
74.90	!	U 1						U 1	_ !	U 1	!	UI		UII		U 1	1 1	U 1	1 U	111		JII		u 1	1	U 1		U 1		U 1	108
84,85 94.75		U 1		U 1		U 1	1	U 1	1	U 1	!_	U 1		U 1		U 1	!	0 1	1 6	111		J 1		U 1	_!	U 1		U 1		01	102
103,50		Uli		U 1		U 1	<del></del>	U 1		U 1		U 1		U 1		U 1		111		44		U 1		U 1		uli		U 1		UII	110
114,30		UII		UII		U 1		U 1	1	U 1		U 1	1 1					41		11						UII	1			UII	118
125.00	<del>                                     </del>					U 1		U 1	1	U 1		U 1		UII		UII	!	UII		111		J 1		U 1		0 1		U 1			
	1	U 1		<u> </u>					1			U 1		U 1		U 1		U[1]		11		11		U 1		0 1		U 1		U 1	118
143,20		U 1		U 1		U 1		U 1		U 1		U 1		U 1		U 1		비비		11		J 1		U 1		U 1		U 1			106
154.70	<del>                                     </del>	UII	!	UI	1	U 1		U 1	1	U 1		UI		0 1		U 1	!	UII		1 1		V 1		U 1	1	U 1		U 1	<u> </u>	U 1	96
165,00	<del>                                     </del>	U 1		U 1		U 1		U 1	1	U 1	<u> </u>	U 1		UII		U 1		비		1 1		U 1		U 1	1	U 1	1	U 1	1	U 1	106
172.35	<del>                                     </del>	U 1		U 1	1	U 1		U 1	11	U 1	11	U 1	1	U 1		U 1	11	비		11	1	011		U 1	1	U 1	1	U 1	1	U 1	105
192,10	1	U 1		U 1	11	U 1		U 1	1	U 1	11	U 1	1	U 1		U 1	1	U 1		1 1	1 1	U 1		U 1	11	U 1	1	U 1	11	U 1	106
200,00	1	U 1	1	U 1	11	U 1	1 1	U 1	1	U 1	1	U 1	1	U 1		U 1	1	비비		11		U 1		U 1	1	U 1	1	U 1	1	U 1	101
210.20	1 1	U 1	11	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1		UII		1 1		U 1		U 1	1	0 1	1	U 1	1	U 1	110
220.00	1	U 11	1	UII	11	U 1		U 1	1	U 1	1	U 1	. 1	U) 1	1	U 1	1	U[1]		11		U 1	1	U 1	1	U 1	1	U 1	1	U 1	105
230.00	1	U 1	1	U 1	1	U 1	1 t	U 1	1	U 1	11	U 1	1	U[1]	11	UII	1	U 1	1 (	11		U 1	1	U 1	1	U 1	1	U 1	11	UII	103
239.30	1	UI	11	U 1	1	U 1		U 1	1	U 1	1	U 1	1	U 1	1	U 1		U 1		11		U 1	1	U 1	1	U 1	1	U 1	1	U 1	101
253,05	1	UII	1	U 1	1	U 1		U 1	7	1	1	U 1	1	UII	1	U 1	1	U 1		1 1	1 1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	103
263,50	11	U 1	1	U 1	1	U 1		U 1	6	1	1111	UI	1	U 1	1	U 1	1	U 1		1 1	1 1	U]1]	1	U 1	1	UII	11	U 1	1	U 1	102
326,65	2	1	11	U 1	1	U 1	1	U 1	8	1	_ 1	U 1	1	U 1	1	U 1	1	U 1	1 (	1 1	1 1	U 1	1	U 1	1	U 1	_ 1	U 1	1	U 1	115
335,00	3	_11	. 1	U 1	2	1	1	U 1	10	11	1	UII	1	UII	1	U 1	1	UII	1 (	J 1	1 1	U 1	1	U 1	1	UI	1	U 1	. 1	U 1	111
345,00	1	1	1	U 1	1	U 1	1	1	10	1	1	U 1	1	U 1	1	U 1	1	U 1	1 1	J 1	1.	U 1	1	U 1	1	U 1	1	U 1	1	U 1	108
361,50	1	- 1	1	U 1	1	U 1	2	1	6	1	1	UII	1	UII	1	U 1	1	U 1	1 (	/ 1	1	U 1	1	U 1	1	UI	1	U 1	1	U 1	104
369.00	1	U 1	1	U 1	1	U 1	1	U 1	4	1	1	U 1	1	U 1	1	U 1	1	UI	1 (	1 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	108
381,70	1	U 1	1	U 1	1	U 1	1	1	3	1	1	U 1	1	U 1	1	U 1	1	U 1	1 (	11	1	U 1	1	U 1	1	UI	1	U 1	1	U 1	110
389,20	1	U 1	1	U 1	1	U 1	1	U 1	4	1	1	U 1	1	U 1	1	U 1	1	UI	1 (	1 1		U 1	1	U 1	1	U	1	U 1	1	U 1	111
404.05	1	UII	1	U 1	1	U 1	1	U 1	1	UII	1	UII	1	UII	1	U 1	1	U 1	1 (	J 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	107
417,35	1 1	UII	1	U 1	1	U 1	1	U 1	1	UII	1	UII	1	U 1	1	U 1	1	UII	1 (	11	1	UII	1	U 1	1	UII	1	U 1	1	U 1	119
424,80	1	UI1	1	U 1	1	U 1	1	U 1	1	UII	1	UII	1	Uli	1	U 1	1	Uli	1 (	11	1	U 1	1	U 1	1	UII	1	U 1	1	U 1	105
434,50	1	UII	1	Uli	1	U 1	1	U 1	1	U 1	1	UII	1	Uli	1	U 1		UI 1	1 (	11	1	ulti	1	UII	1	UII	1	U 1	1	U 1	106
444,80	1	UI1	1	UII	1	U 1	1	U 1	1	Uli	1	U 1	1	Uli	1	UII		Uli	1 (	1 1		ul 1	1	U 1	1	UII	1	U 1	1	UII	102
463.40	1	UII	1	Üİİ	1	III 1	1	011	1	U 1	1	11/11	1	Uli	1	UII		uli	1 1	111		u i	1	ŭi il	1	UII	1	UI	1	Uli	101
471.95	t - i	UII	1	Üİ	<del></del>	UI 1	1	UI 1	1	U 1	1	U i	1	Ü	1	UII		1111	1 1	itit		ul il	1	UI 1	1	UII	1	U 1	<del>                                     </del>	UII	99
481.25	1 1	Ulil		Üİİ	1	11/1	1	U 1		- <u>Ul 1</u>	<del>-</del>	ŭ	<del></del>	-ŭi i	i	ülil	<del></del>	ill t	<del>- i - i</del>	111		ul il	1	ŭH	1	11 1	1	1111	<del>1 i</del>	ulil	106

s with >100 pph fool VOC's cannot be run on a carbosen fiber and will have detection limits of 20 pph Surrogue Recovery

Received above the aspective reporting limit.

Until of value.

In Analyzed due to intelligent Surroje Volume



Location: Hicksville, NY Groundwater Profiling Project ID: SEI #: 03-1402

Date Sampled: 6/9 - 6/18/03 Date Analyzed: 6/9 - 6/18/03 6/18/03 Report Date:

HOLE ID = PC									T							
				VOC DAT	ΓA, ug/L				-		i	NORGANIC DATA, mg/L			COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride								1					l	1.1-DCE / Freon	
		Q t-Dichloroethene	Q c-Dichloro	ethene C	Trichloroether	1e Q	Tetrachloroethene	Q % SS	2	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
79,6			Ü 4	U	4	U	340	89		0.05	0.08	0.03	48	ND	4 U	4 U
89.6	20	U 20	U 20	L	20	U	1200	91		0.05	0.10	0,05	64	0.03	20 U	20 U
99.6	1	U 1	U 1	U	1	U	85	92		0.31	1.28	0,55	49	0.26	10	10
109.6	1	U 1	U 1	U	1	Ū	8	112		0.12	0,27	0,15	78	0.03	10	10
119,6	1	U 1	U 1	L	1	U	1	U 107		0.05	0.09	0.04	41	ND	1 U	1 U
129,6		U 1	U 1	L	1	U	1	90		0.17	1.92	1,05	67	0.39	10	1 U
139,6	1	U 1	U 1	L		U	2	109		0.05	0.30	0.12	95	0.04	1 U	1 U
149.6		U 1	U 1	Ü	2		3	106		0.10	8.9	7.1	103	0.66	1 U	1 U
159.6	1	U 1	U 1	l	23		4	92		ND	0,13	0,08	77	0.03	Detect	1 U
169.6		U 1	U 1	L	8		4	102		0.09	0.59	0.34	111	0.06	Detect	1 U
179.6	1	U 1	U 1	L	30		2	100		ND	0.05	0,08	68	0.04	10	1 U
185.3		, ,	U 3		41		1	U 91		0.04	0.15	0.16	63	0.05	10	10
195.3	1	U 1	U 7		94		3	95		ND	0.04	0,04	53	ND	1 U	10
205.3		U 2	U 12		160		9	98		0.03	0,17	0.14	46	0.04	2 U	2 U
215.3		U 6	U 39		390		23	89		0.07	0.41	0.38	60	0.04	6 U	6 U
225.3		U 2	U 9		130		9	88		ND	0.05	0.07	75	0.02	2 ∪	2 U
235.3	3	U 3	U 18		210		13	90		0,03	0.03	0.03	70	0.02	3 U	3 U
245,3	1	U 1	U 1	Ĺ	1		1	U 89		ND	ND	0.02	110	0.02	1 U	1 U
265.3			U 1	L	1	U	2	90		ND	0,12	0,06	320	ND	10	1 U
275,3	. 1	U 1	U 1	L	1	U	1	104		0.09	0.24	0.29	188	0.07	1 U	1 U
320.3		U 1	U 1	L	1	U	9	104		0.05	0,13	0,16	607	0.05	10	10
330.3	1	U 1	U 1	l	6		2	96		ND	0.11	0.17	350	0.02	1 U	1 U
337,6		U 1	U 3		48		4	104		0.30	1.34	0.34	79	0.24	1 U	1 U
347.7		U 1	U 1	L	3		1	U 98		0.08	0,25	0.14	178	0.03	10	1 U
364.6		U 1	U 1	l	17		3	100		0.42	0.78	0.31	163	0.30	1 U	10
374.5	1	U 1	U 1	Ĺ	2		1	U 98		ND	0.03	0.04	41	0.03	10	10
384.5	1	U 1	U 1	- 1	1 1	U	1	U 100		0,12	0,21	0.20	43	0.07	1 U	1 U
394.5	1	U 1	U 1	L	1 1	U	1	U 95		ND	0.04	ND	29	ND	10	10

j													VOC DATA, ug/L													
Depth	Freon 123A	Q	Freon 123	2 1	.1-Dichloroethane	Q 1	,1,1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q 1.3	-Dichlorobenzene	Q 1.	4-Dichlorobenzene	Q 1.2	-Dichloroben	zene Q		%SS
79.6	4	TÜT	4			ਹਿ	4	ŪΠ		TÜI		ŪΤ		ŪΤ	8	ΤŪΤ		TUI		ŪΪ		U	4	ΙU		89
89.6	20	U	20 L	υT	20	υľ	20	U	20	U	20	υİ	20	υl	40	Tul	20	u	20	υl	20	U	20	U		91
99,6	1	U	1 1	ūΤ	1	ut	1	U	1	Tul	1	υl	1	Ü	2	tut	1	ul	1	U	1	U	1	U		92
109,6	1	U	1 1	u	1	U	1	U	1	Tu	1	U	1	U	2	Tul	1	U	1	u	1	U	1	U		112
119,6	1	U	1 1	ūΤ	1	υl	1	U	1	U	1	U	1	ŭ!	2	Tul	1	U	1	Ü	1	ul	1	Tu		107
129.6	1	U	1 (	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	u	1	U		90
139,6	1	U	1 1	u\~	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		109
149.6	1	U	1 (	U	1	U	1	U	1	U	1	U	1	Ú	2	U	1	U	1	U	1	U	1	U		106
159,6	1	U	1 (	U	1	U	1	U	1	U	1	U	1	ŭ	2	U	1	U	1	U	1	U	1	U		92
169.6	1	U	1 (	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	TU		102
179,6	1	U	1 (	uT.	1	U	1	U	1	U	1	U	1	Ü	2	U	1	U	1	U	1	U	1	U		100
185.3	1	U	1 1	u	1	U	1	U	1	U	1	U	1	U	2	TU	1	U	1	U	1	U	1	U		91
195,3	1	U	1 (	ÜΤ	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		95
205.3	2	U	2 L	u	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U		98
215,3	6	U	6	υt	6	U	6	U	6	U	6	U	6	U	12	TUT	6	U	6	Ü	6	U	6	U		89
225.3	2	U	2 (	υT	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U		88
235.3	3	U	3 (	U	3	U	3	u	3	U	3	U	3	U	6	TUT	3	U	3	U	3	U	3	U		90
245.3	1	U	1 L	UT.	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		89
265.3	1	U	1 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	Ü		90
275.3	1	U	1 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		104
320,3	1	Ų	1 (	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		104
330,3	1	U	1 (	ŪΤ	1	U	1	U	1	U	1	U	1	U	2	U	1	TU	1	U	1	U	1	U		96
337.6	1	U	1 (	U	1	U	1	U	1	U	1	U	1	U	2	TU	1	U	1	U	1	U	1	U		104
347.7	1	U	1 (	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	υ	T	98
364.6	1	U	1 (	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U		100
374.5	1	U	1 (	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	T	98
384.5	1	U	1 1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	1	100
394,5	1	U	1 (	u	1	υ	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	1	95

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

NN = Value below detection limit.



Location: Hicksville, NY Project ID: Groundwater Profiting 03-1402 SEI #:

Date Sampled: 5/27 - 6/4/03 Date Analyzed: 5/27 - 6/4/03 Report Date: 6/4/2003

HOLE ID = PD													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
					VOC E	ATA	, ug/L						H	NORGANIC DATA, mg/L			COELUTING	COMPOUNDS
<u>Depth</u>	Vinyl Chloride															l	1,1-DCE / Freon	
		0 t-	-Dichloroethene C	Q g	-Dichlorgethene	Q	Trichloroethene	QI	etrachloroethene	g	% SS	Fe ⁺²	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
77.1	1	U	1 1	U	1	U	9	J	250		94	0.03	0.26	0,14	124	ND	10	1 U
87.1	1	U	1	U	1	U	1	U	41	J	100	ND	0.12	0.15	49	0.04	1 U	10
97.1	1	U	1 1	U	1	U	1	U	74	J	115	0.03	0.10	0.12	40	0.03	10	Detect
107.1	1	U	1 1	U	1	U	1	U	12		87	0.08	0.22	0.22	38	0.05	1 U	10
117.1	1	U	1 (	U	1	U	1	U	3		90	0.04	0.05	0.08	25	0.02	Detect	10
127,1	1	U	1 (	U	1	U	1	U	1		81	0.06	0,10	0.08	12	ND	Detect	10
137.1	1	U	1 1	U	1	U	1	U	4		97	10.80	10,10	0.38	50	0.04	1 U	1 U
147.1	1	U	1 (	U	1	U	4		2		82	0.11	0,17	0,10	81	0.03	1 U	10
157,1	1	U	1 (	U	1	U	5		1		88	ND	0,11	0,13	85	0,04	1 U	10
167.1	1	U	1 {	U	20	11	200		14		107	0.41	1.05	0,19	68	0,16	1 U	1 U
177,1	1	U	1 (	U	1	U	2	I	2		80	ND	0.07	0,40	125	ΝD	10	1 U
187,1	1	U	1 1	U	4	LT	40		3		111	0.06	0.23	0.22	111	0,06	10	1 U
197.1	1	U	1 1	U	1	U	8		1	U	76	0.17	1,55	1.15	87	0.37	1 U	1 U
207.1	1	U	1 (	U	1	U	6		1	U	79	0.21	2,13	1.00	83	0,27	1 U	10
217.1	1	U	1 1	U	_ 1	U	1	U	1	U	80	ND ND	0.13	0,12	84	0,03	10	10
227.1	1	U	1 1	U	1	U	1	U	1	U	84	0,11	0.63	0.47	76	0.11	10	1 U
237.1	1	U	1	U	1	U	1	U	1	U	77	ND	0.17	0.20	70	0,03	1 U	10
247.1	1	U	1 1	U	1	U	1	U	1	U	88	ND	0.16	0.13	96	0.03	10	10
257.1	1	U	1 1	U	1	U	3		8		109	0.31	0.52	4.00	187	0.14	10	10
290,1	1	U	1 (	U	1	U	8		31		109	0.40	0.09	0.09	702	0.03	10	10
317.0	1	U	1 1	U	1	U	3		17		96	0.25	0.40	0.45	667	0.07	1 U	1 U
322.0	1	U	1	Ü	1	U	3		16		92	0.20	0.44	0.21	777	0.03	1 U	1 U
332.0	1	U	1 1	U	1	U	1	U	4	$\Box$	94	0.02	0.09	0.09	350	ND	1 U	10
342.0	1	U	1	U	1	U	1	U	1	U	96	ND	ND	ND	91	ND	10	1 U
352.0	1 1	U	1 1	Ü	1	U	1	U	1	U	93	0.05	0.29	0.16	28.5	ND	1 U	1 U

														VOC DATA, ug/L												
Depth	Freon 123A	Q	Freon_123	Q 1	1,1-Dichloroethane	Q 1.1	1.1-Trichloroethan	e Q	Toluene	Q	Chloro	penzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q	1,3-Dichlorobenzene	0.1	4-Dichlorobenzene	Q 1.2-	Dichlorobenze	ne Q	%SS
77.1	1	UI		u	1	U	1	TÜT	1	TU		1	ΙŪΙ		ŪΙ	2	TUI	1	TÜ		TUT	1	U	1	IUI	94
87.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	100
97.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	115
107.1	1	U	1	U	1	U	1	u	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	87
117.1	1	U	1	U	1	U	2		1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	90
127.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	81
137.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	97
147.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	TU	1	U	1	U	82
157.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	88
167.1	1	U	1	U	1	U	1	U	1	Ü		1	U	1	U	2	U	1	U	1	U	1	U	1	U	107
177.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	11	U	1	U	80
187.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	111
197.1	1	U	11	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	u	76
207,1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	79
217.1	1	U	11	U	1	U	11	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	80
227.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	11	U	84
237.1	1	U	11	U	1	U	1	U	1	U		1	U	1	2	2	U	1	U	1	U	11	U	1	U	77
247,1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	Ü	1	U	1	U	1	U	1	U	88
257.1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	109
290,1	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	109
317.0	1 1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
322.0	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	92
332.0	1	U	1	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
342,0	1	U	11	U	1	U	1	U	1	U		1	U	1	U	2	U	1	U	1	U	1	U	1	U	96
352.0	1	U	1	U	1	U	1	U	1	U		1	tul	1	U	2	U	1	U	1	TU	1	U	1	Tul	93

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled



Location: Hicksville, NY Project ID: Groundwater Profiling SEL#: 03-1402

5/15 - 5/23/03 Date Sampled: Date Analyzed: 5/15 - 5/23/03 5/23/03 Report Date:

HOLE ID = PE																1		······································
Depth	Vinyl Chloride				VOC DA	λTΑ	, ug/L						í	INORGANIC DATA, mg/L	_		1,1-DCE / Freon	COMPOUNDS
		Q	t-Dichloroethene	2 1	c-Dichloroethene	Q	Trichloroethene	Q ]	Tetrachloroethene	Q.	% SS	Fe ⁺²	Fe. Total	Ammonia	Chloride	Chlorine, Total	113	1.2-DCA / Benzene
78.6	1	U	1 [1	J	1	U	1	υŢ	1	П	106	ND	0.06	0,15	23	ND	10	10
88.6	1	U	1	U	2		1		5		112	7,7	9.3	0.10	15	ND	1 U	1 U
98,6	1	U	1 1	U	1	U	1	U	55	$\Box$	105	13.9	14.3	0.24	14	0.03	1 U	10
108.6	1	UJ	1 1	UT.	1	U	1	U	70	П.	102	11,60	12,20	0,12	13	0.12	10	1 U
118,6	1	W	1 1	U	1	U	1	U	58		99	ND	0.08	0,62	18	ND	1 U	10
128.6	20	U	20	U	20	U	20	U	1800		108	0.10	0.27	0.14	33	ND ND	20 U	20 U
138,6	20	U	20	U	20	U	20	U	1700	J	111	0.36	0.43	0.24	23	ND	20 U	20 U
148.6	1	U	1 1	U	1	U	1	U	13		123	0.06	0.21	0.27	104	ND ND	10	Detect
158,6	1	U	1 1	UT_	1	U	1	U	2		116	ND	0.30	0.22	142	ND ND	10	Detect
168.6	1	U	1	U	1	U	1	U	1		121	0.03	0,67	0.10	121	ND	1 U	10
178.6	1	U	1	U	1	U	1	U	16		119	ND	ND	ND	230	ND	10	1 U
198.6	1	U	1	ΨŢ	1	U	1	U	1		117	ND	0,11	0,14	308	ND	1 U	10
208,6	1	U	1	U	1	U	1	U	1	U	109	0.06	0.32	0.21	395	ND	1 U	10
218.6	1	U	1	U	1	V	1	U	1	U	113	0.14	0,48	0.52	385	0.07	1 U	1 U
228,6	1	U	1	U	1	U	1	U	1	U	113	0,35	1.48	0.53	438	0.21	1 U	1 U
238.6	1	U	1	U	1	U	1	U	2		114	0,36	5.0	1.1	518	0.37	1 U	1 U
268,6	1	U	1	υŢ	1	U	1	U	45		112	0.34	1,29	0.47	608	0.11	10	10
292,3	1	U	1	U	1	U	1		42		114	ND ·	0.07	0.09	895	ND	1 U	1 U
301,3	2	UU	2	ul	2	U	7		170	П	113	0,09	0,09	0.12	820	0.03	2 U	2 U
317.2	4	UJ	4	U	4	U	6		310		121	0.16	0.35	0.18	193	0.04	4 U	4 U
327.2	1	UJ	1	υţ	1	U	4		30		120	0,16	0.20	0.34	843	0.11	1 U	1 U
332.9	1	UJ	1	U	1	U	2		16		116	0.14	0.32	0.25	718	0.10	1 U	1 U

										_															
	İ												VOC DATA, ug/L												
<u>Depth</u>	Freon 123A	Q	Freon 123	Q	1.1-Dichloroethane	Ω:	I.1.1-Trichloroethane	Ω	Toluene	Q.,	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q 1.	3-Dichlorobenzene	914	4-Dichlorobenzene	91	2-Dichlorobenzer	e Q	%SS
78.6	1	U	1	U	1	U	1	U	1	u	11	U	1	U	2	U	1	U	1	U	1	U	1	U	106
88.6	111	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	112
98.6	1	U	1	U	1	U	1	U	1	U	11	u	1	U	2	U	1	U	1	U	1	U	1	U	105
108.6	1	U	1 1	U	1	U	1	U	1	u	11	U	1	U	2	U	1	U	1	U	1	U	11	U	102
118,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	99
128.6	20	U	20	U	20	٦	20	U	20	U	20	U	20	U	40	U	20	U	20	U	20	U	20	U	108
138.6	20	U	20	U	20	U	20	U		U	20	U	20	U	40	U	20	U	20	U	20	U	20	U	111
148,6	1	U	1	U	1	U	1	U	1 1	U	1	U	11	U	2	U	1	U	1	U	11	U	11	U	123
158.6	1	U	1	U	11	U	1	U	11	U	11	U	1	U	2	U	1	U	1	U	1	U	11	U	116
168.6	1	U		U	1	Ų	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	121
178.6	1	U		U	1	U	1	U	1	U	11	U	11	Ü	2	U	11	U	11	U	1	U	1	U	119
198,6	1	U	11	U	1	U	1	U	1	U	1	U	11	U	2	U	1	U	11	U	1	U	1	U	117
208,6	1	U		U	11	U	11	U	11	U	11	U	1	U	2	U	1	U	1	U	11	U	1	U	109
218.6	1	U		U	1	U	1	U	1	u	11	U	11	U	2	U	1	U	1	U	1	U	1	JU	113
228,6	11	U		U		U	11	U	11	U	111	U	1	U	2	U	11	U	1	U	1	U	1	U	113
238,6	11	U	1	U	1	U	1	U	1	U	11	U	11	U	2	U	1	U	11	U	1	U	1	U	114
268.6	1	U	1	U	1	U	1	U	11	U	1	U	11	U	2	U	1	U	1	U	1	U	11	U	112
292,3	1	U	11	U	1	U	1	U	11	U	11	U	11	U	2	U	1	U	11	U	11	U	1	U	114
301.3	2	U		U	2	U	2	U	2	υ	2	U	2	U	44	U	2	U	2	U	2	U	2	U	113
317.2	4	U		U	4	U	4	U	4	U	4	U	4	U	8	U	4	U	4	U	4	U	4	IU	121
327.2	1	U	1	U	1	U	11	U		U	1	U	1	U	2	U	11	U	1	U	1	U	1	U	120
332.9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	116

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %,SS = Surrogate Recovery

U = Undetected below the specified reporting limit.

J = Estimated value.
ND = Value below detection limit.
NS = Not Sampled



Client:

Location:

Hicksville, NY Project ID: Groundwater Profiling

SEL#:

03-1402

Date Sampled: 4/28 - 5/2/03

Date Analyzed: Report Date:

4/28 - 5/9/03 5/9/03

HOLE ID = PF													
			VOCE	ATA, ug/L					INORGANIC DATA, mg/L			COELUTING	COMPOUNDS
Depth	Vinyl Chloride	1-Dichloroethene	2 c-Dichloroethene	Q Trichloroethene	Q Tetrachloroethene Q	% SS	Fe ⁺²	Fe. Total	Ammonia	Chloride	Chlorine, Total	<u>113</u>	1,2-DCA / Benzene
76.5	20	J 20	J 120	120	8200	104	0.45	1.16	0.49	40	0.11	20 U	20 U
86.5	20	20	J 20	U 20	U 450	97	0.03	0.29	0.18	17	ND	20 U	20 U
96,5	1 1	J 1	J 1	U 1	U 4	90	0.08	0.26	0.20	76	ND	N/A	N/A
106.5	1 1	J 1	JI 1	U 1	U 3	105	0.02	0.27	0,32	88	ND	1 U	1 U
116.5	1 1	J 1	J 1	U 1	U 2	99	0.00	0.00	0.05	72	ND	10	1 U
126,4	1 1	J 1	J 1	U 1	U 2	103	0.07	0,61	0,57	80	0.08	1 U	1 U
136.5	1	J 1	U 1	U 1	U 2	95	0.04	0.22	0,30	116	0.05	1 U	1 U
146.3	1	J 1	U 1	U 1	U 2	101	0.03	0.12	0.22	108	0.02	1 U	10
156.5	1	J 1	U 1	U 1	U 4	99	0,07	0,51	0,57	75	0.07	1 U	1 U
166,5	1 1	J 1	U 1	U 1	U 2	97	0.03	0,69	0.92	72	ND	1 U	1 U

			***************************************			·····													
							VOC DATA	i, ug/L											
<u>Depth</u>	Freon 123A	Q Freon 123	Q 1.1-Dichloroethane C	1.1.1-Trichloroethane C	Toluene	Q Chlorobenzene	Q Ethylben	zene Q	m.p-Xylene	9	o-Xylene	Q 1,3-Di	chlorobenzen	e Q 1.4	-Dichlorobenzer	ne Q 1,2-Di	chlorobenzene	<u>Q</u>	%SS
76,5	20	U 20	U 20 L	) 20 L	20	U 20	U 20	Ü	40	U	20	U	20	JUI	20	U	20	U	104
86.5	20	U 20	U 20 L	J 20 L	20	U 20	U 20	U	40	Ü	20	U	20	U	20	U	20	U	97
96,5	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.		NA	TT	NA.	TT	NA.		NA.	1. 1	NA		90
106.5	1	U 1	U 1 L	J 1 L	1	U 1	U 1	U	2	U	1	U	1	U	1	U	1	U	105
116.5	1	U 1	U 1 (	1 1	1	U 1	U 1	U	2	U	1	U	1	U	1	U	1	U	99
126.4	1	U 1	U 1 U	1 1	1	U 1	U 1	U	2	U	1	U	1	U	1	U	1	U	103
136.5	1	U 1	U 1 L	J 1 L	1	U 1	U 1	U	2	U	1	U	1	U	1	U	1	U	95
146.3	1	U 1	U 1 L	J 1 (	1	U 1	U 1	Ü	2	U	1	U	1	U	1	U	1	U	101
156.5	1	U 1	U 1 (	1 1	1	U 1	U 1	U	2	u	1	U	1	U	1	U	1	U	99
166.5	1	U 1	U 1 (	J 1 L	1	U 1	U 1	U	2	U	1	U	1	U	1	U	1	U	97

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery U = Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled

NA = Not Analyzed for this analyte.



Client: GTEOSI Hicksville, NY Location: Project ID: Groundwater Profiling SEI #: 03-1402 Date Sampled: 7/21 - 7/27/03 7/21 - 7/27/03 Date Analyzed:

Report Date:

7/27/03

HOLE ID = PH															]		
				VOC I	DATA	, ug/L						J	NORGANIC DATA, mg/L	_		COELUTING	COMPOUNDS
Depth	Vinyl Chloride															1.1-DCE / Freon	
		Q t-Dichloroethene	Q	c-Dichloroethene	Q	Trichloroethene	Ω :	Tetrachloroethene	Q	% SS	Fe*2	Fe, Total	Ammonia	Chloride	Chlorine, Total	113	1,2-DCA / Benzene
76,8	1	U 1	U	1	U	1	U	8		87	0.09	0.33	0,19	33	0.06	1 U	10
86.8	1	U 1	U	1	U	1	U	11		95	0.08	0.18	0.11	21	0.02	1 U	10
96.8	12	U 12	U	12	U	12	U	1500		115	0,06	0,13	0,04	44	ND	12 U	12 U
106.8	2	U 2	U	2	U	4		240		110	0.06	0.16	0.07	48	0.02	Detect	20
116.8	1	U 1	U	1	U	1	U	10	П	95	0,10	0.23	0,20	28	0.05	Detect	10
126.8	1	U 1	U	1	U	1	U	10	17	99	0.09	0.20	0.19	50	0.05	1 U	10
136,8	1	U 1	U	1	U	1	U	4		104	0,11	0.29	0,28	60	0.08	Detect	10
146.8	1	U 1	U	1	U	1	U	3	П	98	0.22	0.87	0.72	71	0.16	Detect	1 U
156.8	1	U 1	U	1	U	12		7		106	0.11	1.26	0.85	68	0.05	Detect	1 Ų
166,8	1	U 1	U	1	U	24	П	6	П	104	0.12	0.32	0.28	64	0.08	1 U	10
176.8	1	U 1	U	3		42		22		108	0.15	0.34	0,36	92	0.06	1 U	1 U
186,8	1	U 1	U	1	U	2		2		97	0,03	0.09	0.11	107	0.03	1 U	10
196.8	1	U 1	U	1	U	7		2	П	105	0.43	0.86	0,50	109	0.28	1 U	10
206.6	1	U 1	U	1	U	1	U	3		105	ND	0,05	0,05	140	ND	1 U	1 U
216.6	1	U] 1	U	1	υ	1	U	1	U	105	0,03	0.06	0.08	78	ND	1 U	10
226.6	1	U 1	U	1	U	1	U	1	U	108	ND	0.03	0.02	75	0,03	1 U	10
236.6	1	U 1	U	1	U	1	U	1	U	90	0.15	0.23	0.20	80	ND	1 U	1 U
328.5	1	U 1	U	1	U	3		12		108	0.03	0.07	0,10	447	0.02	1 U	10
335.0	1	U 1	U	1	U	10		6		117	ND ND	0.10	0.09	288	0.02	1 U	10
351.7	1	U 1	U	1	U	1	U	2		123	0.11	0.18	0.11	231	0.02	1 U	10
376.9	1	U 1	U	1	U	5		1	U	99	0.11	0.32	0.04	96	0.05	1 U	10
386,5	1	U 1	U	1	U	1	U	1	U	112	0.15	0.29	0,21	40	0.09	1 U	1 U
396.5	1	U 1	U	1	U	1	U	1	U	122	0.04	0.43	0.13	28	0.03	1 U	10

	1								**																
													VOC DATA, ug/L												
Depth	Freon 123A	Ω.	Freon 123	Ω.	1,1-Dichloroethan	2 9:	1, 1, 1-Trichloroethane	Q	Toluene	Q	Chlorobenzene	Q	Ethylbenzene	Q	m.p-Xylene	Q	o-Xylene	Q 1	3-Dichlorobenzene	Q 1	4-Dichlorobenzene	Q 1,2-	Dichlorobenze	ne Q	%SS
76.8	1	U	1	U	1	U	1	U	1	U	1	ŪΪ	1	U	2	U	1	U	1	U	1	U	1	U	87
86.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	95
96.8	12	U	12	U	12	U	12	U	12	U	12	U	12	U	24	U	12	U	12	U	12	U	12	U	115
106.8	2	U	2	U	2	U	2	U	2	U	2	U	2	U	4	U	2	U	2	U	2	U	2	U	110
116.8	1	U	1	U	1	U	1	U		U	1	U	1	U	2	U	111	U	1	U	1	U	1	U	95
126.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	Ű	1	U	1	U	1	U	99
136.8	1	U	1	U	1	U	1	U	1	u	1	U	1	U	2	U	. 1	U	1	U	1	U	1	U	104
146.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	98
156.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	106
166.8	1	U	1	U	1	U	1	U	1	U	1	Ü	1	U	2	U	1	Ü	1	υ	1	U	1	U	104
176.8	1	U	1	U	11	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
186.8	1	U	1	U	1	U	1	U	1	l U I	1	Ü	1	U	2	U	1	U	1	U	1	U	1	U	97
196.8	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	Ū	1	U	1	U	1	U	105
206,6	1	U	1	U	1	U	1	U	1	UI	1	U	1	U	2	U	1	U	1	U	1	U	1	U	105
216.6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	105
226,6	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
236.6	1	U	1	U	1	U	1	U	1	U	1	U	11	U	2	U	1	U	1	U	1	U	1	U	90
328,5	1	U	1	U	1	U	1	U		U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	108
335.0	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	11	U	117
351.7	1	U	1	U	1	U	1	U		U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	123
376.9	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	99
386.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	112
396.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	122

Samples with >100 ppb total VOC's cannot be run on a carboxen fiber and will have detection limits of 20 ppb %SS = Surrogate Recovery

Le Undetected below the specified reporting limit.

J = Estimated value.

ND = Value below detection limit.

NS = Not Sampled

Sample ID Sampling Date Well Depth in Feet Units	OU2-3 1/9/2012 100 ug/l	OU2-4 1/11/2012 114 ug/l	OU2-5 1/11/2012 121 ug/l	OU2-6 1/9/2012 115 ug/l	OU2-7A 1/6/2012 100 ug/l	OU2-7B 1/6/2012 120 ug/l	OU2-8A 1/4/2012 100 ug/l	Class GA Standards and Guidance Values ug/i
COMPOUNDS								
1,1,1-Trichloroethane	U	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	5
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	5
,1,2-Trichloroethane	U	U	U	U	U	U	Ü	1
,1-Dichloroethane	U	U	U	U	U	U	U	5
,1-Dichloroethene	U	U	U	U	U	U	U	5
,2,4-Trichlorobenzene	U	U	U	U	U	U	U	5
,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	5
,2-Dibromoethane (EDB)	U	U	U	U	U	U	U	***
,2-Dichlorobenzene	U	U	U	U	U	U	U	3
1,2-Dichloroethane	U	U	U	U	U	U	U	0.6
,2-Dichloropropane	U	U	U	U	U	U	U	1
,3-Dichlorobenzene	U	U	U	U	U	U	U	3
,4-Dichlorobenzene	u	U	U	U	U	U	U	3
2-Hexanone	U	U	U	U	U	U	U	50 GV
Acetone	U	U	U	U	U	U	U	50
Benzene	U	U	U	u	U	U	U	1
Bromodichloromethane	U	U	U	u	U	U	U	50 GV
Bromoform	U	U	U	U	U	U	U	50 GV
Bromomethane	U	U	U	U	U	U	U	5
Carbon disulfide	1.2 J	U	U	U	U	U	U	***
Carbon tetrachloride	U	U	U	U	U	U	U	5
Chlorobenzene	U	U	U	U	U	U	U	5
Chloroethane	U	U	U	U	U	U	U	5
Chloroform	U	U	U	U	U	U	U	5
Chloromethane	U	U	U	U	U	U	U	5
is-1,2-Dichloroethene	120	1.5 J	U	1.4 J	17	130	5 J	5
is-1,3-Dichloropropene	U	U	U	U	U	U	U	0.4
Cyclohexane	1.2 J	U	U	U	U	U	U	
Dibromochloromethane	U	U	U	U	u	U	U	50 GV
Dichlorodifluoromethane	U	U	u	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	U	5
sopropylbenzene	U	U	U	U	U	U	Ü	5

See next page for Footnotes/Qualifers



Sample ID Sampling Date Well Depth in Feet Units	OU2-3 1/9/2012 100 ug/l	OU2-4 1/11/2012 114 ug/l	OU2-5 1/11/2012 121 ug/l	OU2-6 1/9/2012 115 ug/l	OU2-7A 1/6/2012 100 ug/l	OU2-78 1/6/2012 120 ug/l	OU2-8A 1/4/2012 100 ug/l	Class GA Standards and Guidance Values ug/l
COMPOUNDS CONTINUED								
Methyl Acetate	U	U	U	U	U	U	U	***
Methyl ethyl ketone (2-Butanone)	U	u	U	U	U	U	U	50 GV
Methyl isobutyl ketone	U	U	U	U	U	U	U	***
Methylcyclohexane	U	U	U	U	U	U	U	***
Methylene chloride	U	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	U	5
Tert-butyl methyl ether	2 J	0.55 J	1.8 J	U	0.56 J	1 ]	U	10 GV
Tetrachloroethene	3900 D	32	4 J	31	260 D	1100 D	66	5
Toluene	U	U	U	U	U	U	U	5
trans-1,2-Dichloroethene	0.72 J	U	U	U	U	0.7 J	U	5
trans-1,3-Dichloropropene	U	U	U	U	U	u	U	0.4
Trichloroethene	44	U	U	U	4.9 J	23	0.95 J	5
Trichlorofluoromethane	U	U	U	U	U	U	U	5
Vinyl chloride	U	U	U	U	U	U	U	2
Total xylene	U	U	U	Ü	U	u	U	5
Total Volatile Organic Compounds	4069.12	34.05	5.8	32.4	282.46	1254.7	71.95	-

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
- U: Analyzed for but not detected
- J: Estimated value or limit
- D: Result reported from a secondary dilution
- GV: Guidance value
- ---: No standard or GV available

Exceeds Class GA Standard or GV



Sample ID Sampling Date Well Depth in Feet Units	OU2-8B 1/4/2012 125 ug/l	0U2-8C 1/4/2012 150 ug/l	OU2-9A 1/5/2012 100 ug/l	OU2-9B 1/5/2012 125	0U2-9C 1/5/2012 150	0U2-10A 1/10/2012 100	0U2-10B 1/10/2012 125	Class GA Standards and Guidance Values
COMPOUNDS	ugn	ugn	ugn	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-Trichloroethane	U	U	U	U	υ	U	U	5
1,1,2,2-Tetrachloroethane	ü	u	Ü	Ü	ŭ	U	U	5
1,1,2-Trichloro-1,2,2-trifluoroethane	Ü	ŭ	Ü	u	ŭ	Ü	U	5
1,1,2-Trichloroethane	U	Ü	U	u	Ü	U	U	1
1,1-Dichloroethane	u	Ü	Ü	ŭ	ŭ	U	U	
1,1-Dichloroethene	U	U	ŭ	u	ŭ	U	U	5
1,2,4-Trichlorobenzene	u	Ü	ŭ	Ü	ŭ	U	U	5
1,2-Dibromo-3-chloropropane	u	U	U	U	Ü	U	Ü	5
1,2-Dibromoethane (EDB)	u	U	U	U	Ü	ŭ	U	_
1,2-Dichlorobenzene	U	u	ŭ	ŭ	Ü	u	U	3
1,2-Dichloroethane	ū	U	ŭ	ŭ	ŭ	ŭ	Ü	0.6
1,2-Dichloropropane	U	Ü	Ü	u	U	U	U	1
1,3-Dichlorobenzene	ŭ	U	U	u	Ü	u	U	3
.4-Dichlorobenzene	Ü	U	Ü	u	U	u	U	3
2-Hexanone	U	Ü	U	u	Ü	Ü	U	50 GV
Acetone	U	U	U	u	Ü	U	Ü	50
Benzene	u	U	U	3 1	U	U	11	1
Bromodichloromethane	u	U	U	- 0	U	U	- U	50 GV
Bromoform	U	U	U	U	U	U	U	50 GV
Bromomethane	U	U	U	U	U	u	U	5
Carbon disulfide	U	U	U	u	U	u	U	***
Carbon tetrachloride	U	U	U	U	U	u	U	5
Chlorobenzene	U	U	U	U	U	u	U	5
Chloroethane	U	U	U	U	U	u	U	5
Chloroform	0.77 J	U	U	U	U	U	U	5
Chloromethane	U	U	U	U	U	u	U	5
cis-1,2-Dichloroethene	U	U	U	0.84 J	70	U	1.4 J	5
is-1,3-Dichloropropene	U	U	Ü	U	U	U	U	0.4
Cyclohexane	U	U	U	U	u	U	0.78 J	
Dibromochloromethane	U	U	U	u	U	u	U	50 GV
Dichlorodifluoromethane	U	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	ŭ	5
sopropylbenzene	U	U	U	U	U	u	U	5

See next page for Footnotes/Qualifers



Sample ID Sampling Date Well Depth in Feet Units	OU2-88 1/4/2012 125 ug/l	OU2-8C 1/4/2012 150 ug/l	0U2-9A 1/5/2012 100 ug/l	OU2-9B 1/5/2012 125 ug/l	OU2-9C 1/5/2012 150 ug/l	OU2-10A 1/10/2012 100 ug/l	OU2-10B 1/10/2012 125 ug/l	Class GA Standards and Guidance Values ug/l
COMPOUNDS CONTINUED								
Methyl Acetate	U	u	U	U	u	U	U	
Methyl ethyl ketone (2-Butanone)	U	u	U	U	U	U	U	50 GV
Methyl isobutyl ketone	U	U	U	U	U	U	U	***
Methylcyclohexane	U	u	U	U	U	U	u	
Methylene chloride	U	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	U	5
ert-butyl methyl ether	0.8 J	1.6 J	U	U	4.4 J	0.93 J	U	10 GV
etrachloroethene	3.2 J	4.9 J	4.3 J	32	1700 D	4.4 J	61	5
oluene	U	U	U	U	U	U	U	5
rans-1,2-Dichloroethene	U	U	U	U	U	U	U	5
rans-1,3-Dichloropropene	U	U	U	U	U	U	U	0.4
richloroethene	0.68 J	U	Ü	1.4 J	28	U	1.2 J	5
richlorofluoromethane	U	U	U	U	u	U	U	5
/inyl chloride	U	U	U	U	U	U	U	2
otal xylene	U	U	U	u	U	U	1.8 J	5
Total Volatile Organic Compounds	5.45	6.5	4.3	37.24	1802.4	5.33	77.18	-

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
- U: Analyzed for but not detected
- J: Estimated value or limit
- D: Result reported from a secondary dilution
- GV: Guidance value
- ---: No standard or GV available

Exceeds Class GA Standard or GV



Sample ID Sampling Date Well Depth in Feet Units	0U2-10C 1/10/2012 150 ug/l	OU2-11 1/19/2012 200 ug/l	OU2-IW-1 1/6/2012 95 ug/l	OU2-IW-3 1/9/2012 95 ug/I	OU2-IW-4 1/12/2012 95 ug/l	BIGMCARWASH 1/11/2012 65 ug/l	Class GA Standards and Guidance Values ug/l
COMPOUNDS				-3"	-9:		
1,1,1-Trichloroethane	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	5
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	5
,1,2-Trichloroethane	U	U	U	U	U	U	1
,1-Dichloroethane	U	U	U	u	U	u	5
,1-Dichloroethene	U	U	U	U	U	u	5
,2,4-Trichlorobenzene	U	U	U	U	U	u	5
,2-Dibromo-3-chloropropane	U	·U	U	U	U	U	5
,2-Dibromoethane (EDB)	U	U	U	U	U	U	
,2-Dichlorobenzene	U	U	U	U	U	U	3
,2-Dichloroethane	U	U	U	U	U	U	0.6
,2-Dichloropropane	U	U	U	U	U	u	1
,3-Dichlorobenzene	U	u	U	U	U	U	3
,4-Dichlorobenzene	u	U	U	U	U	U	3
-Hexanone	U	U	U	U	U	U	50 GV
Acetone	U	U	U	U	U	U	50
Benzene	U	u	Ü	U	U	U	1
Bromodichloromethane	U	U	U	U	U	U	50 GV
Bromoform	U	U	U	U	U	U	50 GV
Bromomethane	U	U	U	U	U	U	5
Carbon disulfide	U	U	U	U	U	U	
Carbon tetrachloride	U	U	U	U	U	Ü	5
Chlorobenzene	U	U	Ü	U	U	U	5
Chloroethane	U	U	U	U	U	U	5
Chloroform	U	U	U	U	U	U	5
Chloromethane	u	U	U	U	U	Ú	5
is-1,2-Dichloroethene	11	1.6 J	U	3.8 J	U	18	5
is-1,3-Dichloropropene	U	u	u	U	u	U	0.4
Cyclohexane	U	U	U	U	U	U	
Dibromochloromethane	U	U	U	U	U	U	50 GV
Dichlorodifluoromethane	U	U	U	U	U	U	5
Ethylbenzene	U	u	U	U	U	U	5
sopropylbenzene	u	U	U	U	U	u	5

See next page for Footnotes/Qualifers



Sample ID Sampling Date Well Depth in Feet Units	0U2-10C 1/10/2012 150 ug/l	OU2-11 1/19/2012 200 ug/l	OU2-IW-1 1/6/2012 95 ug/l	OU2-IW-3 1/9/2012 95 ug/i	OU2-IW-4 1/12/2012 95 ug/l	BIGMCARWASH 1/11/2012 65 ug/l	Class GA Standards and Guidance Values ug/l
COMPOUNDS CONTINUED							
Methyl Acetate	U	U	U	U	U	U	
Methyl ethyl ketone (2-Butanone)	U	U	U	U	U	U	50 GV
fethyl isobutyl ketone	U	U	U	U	U	U	_
Methylcyclohexane	U	U	U	U	U	u	-
fethylene chloride	U	U	U	U	U	U	5
tyrene	U	U	U	U	U	U	5
ert-butyl methyl ether	U	4.1 J	U	U	U	2.1 J	10 GV
etrachloroethene	350 D	160	5.7	81	9.8	400 D	5
oluene	U	0.54 J	U	U	U	U	5
rans-1,2-Dichloroethene	U	U	U	U	U	U	5
rans-1,3-Dichloropropene	U	U	U	U	U	U	0.4
richloroethene	3.4 J	0.97 J	U	1 J	U	10	5
richlorofluoromethane	U	U	U	U	U	U	5
'inyl chloride	U	u	U	U	U	U	2
otal xylene	U	U	U	u	u	U	5
otal Volatile Organic Compounds	364.4	167.21	5.7	85.8	9.8	430.1	-

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
- U: Analyzed for but not detected
- J: Estimated value or limit
- D: Result reported from a secondary dilution
- GV: Guidance value
- ---: No standard or GV available

Exceeds Class GA Standard or GV

